
Using Bitmask

1 Motivation
Suppose you have a set of objects and you want some way to represent which objects to pick and
which ones not to pick. How do you represent that in in a program? More generally, how do you
represent a subest of a set?One way is to use a Map to associate with each object a boolean value
indicating whether the object is picked. Alternatively, if the object can be indexed by integers, you
can use a boolean array. However, this takes up a lot of memory and can be slow due to the overhead of
Map and array. If the size of the set is not too large, a bitmask is much more efficient (and convenient)!

2 What is a Bitmask?
We can represent whether an object is picked or not by a single bit! Using a boolean to represent this is
an overkill in terms of memory usage. However, neither C++ nor Java has any data type representing
a single bit, so how can we cut down the memory usage?

The answer is to use an integer! We know an integer is just a bunch of bits stringed together, so
why don’t we use the integer to represent the entire set? The 1st bit will represent whether the 1st

object is picked, the 2nd bit will represent whether the 2nd object is picked or not, etc. For example,
suppose in a set of 5 objects, we have picked the 1st, 3rd, and 4th object. The bitmask to represent this
in binary is 01101 or 13 in decimal (in the notes, the 1st bit will always be the least significant bit and
will always appear at the very right). We have just cut down the memory usage from five booleans to
a single integer!

This sounds nice, but there is a serious limitation to this approach. An int is 32-bit, so what if the
number of objects is greater than 32? In this case, we will have to use a long long in C++ or long in
Java. So what if the number of object is greater than 64? Unfourtunately, bitmask becomes infeasible.

3 Manipulating Bitmask
Bitmask are not only memory efficient, they are also easy to manipulate. Both C++ and Java supports
a variety of bitwise operators:

Bitwise Operators
Operator Name Description Example
>> Right Shift Shift every bit to the right, discard the lowest significant bit,

and extend the sign bit
-8 >> 3 = -1

<< Left Shift Shift every bit to the left, discard the highest significant bit
(sign is preserved), and add a 0 as the lowest significant bit

-8 << 1 = -16

& Bitwise And ”And” every bit individually 9 & 3 = 1
| Bitwise Or ”Or” every bit individually 9 | 3 = 11
ˆ Bitwise Xor ”Xor” every bit individually 9 ˆ 3 = 10
˜ Bitwise Not Flip every bit ˜9 = -10

With these operations, we can manipulate the bitmask in many ways:

Description Code
Add the ith object to the subset
(set the ith bit from 0 to 1)

x = (x | (1 << i))

Remove the ith object from the subset
(set the ith bit from 1 to 0)

x = (x - (1 << i))

Check whether the ith object is in the subset
(check whether ith bit is 1)

(x & (1 << i)) != 0

Iterate through all subsets of a set of size n for (x = 0; x < (1 << n); ++x)
Iterate through all subsets of a subset y
(not including empty set)

for (x = y; x > 0; x = (y & (x-1)))

Find the lowest index that is set to 1 x & (-x)

4 Final Remarks
Bitmask is an efficient and convenient way to represent subsets. For example, given a set of numbers,
we want to find the sum of all subsets. This is easy to code using bitmasks. Furthermore, we can use
an array to store all the results (imagine storing the results when you are using an array to represent
the subset)!

i n t s u m o f a l l s u b s e t (v e c t o r <i n t > s) {
i n t n = s . s i z e () ;
i n t r e s u l t s [(1 << n)] ;

/ / i n i t i a l i z e r e s u l t s t o 0
memset (r e s u l t s , 0 , s i z e o f (r e s u l t s)) ;

/ / i t e r a t e t h r o u g h a l l s u b s e t s
f o r (i n t i = 0 ; i < (1 << n) ; ++ i) {

f o r (i n t j = 0 ; j < n ; ++ j) {
i f ((i & (1 << j)) != 0)

r e s u l t s [i] += s [j] ;
}

}
}

Finally, two word of caution on using bitmasks. First, always check the size of the set to determine
whether to use an int or long long (long in Java) or not using bitmask at all. Secondly, always use
parenthesis to indicate the precedence of operations when doing bitwise operations! The order of
operations is very screwed up when it involves bitwise operators and not putting parenthesis when
yield undesirable results! For example, let x = 5. Then x - 1 << 2 = 16, but x - (1 <<
2) = 1.

