
Applications of DFS

1 The White-Gray-Black DFS
DFS is useful for simple flood-filll since it’s easy to code. However, there are more complicated
algorithm that uses DFS. In particular, these algorithms make use of the DFS tree. To explain what
a DFS tree is, we first expand our DFS algorithm to what is known as the White-Gray-Black DFS.
First, we mark all vertices white. When we call dfs(u), we mark u to be gray. Finally, when
dfs(u) returns, we mark u to be black. Also, we have a global counter to keep track of when each
vertex is first visited.

bool graph [ 1 2 8 ] [ 1 2 8 ] ; / / a d j a c e n c y m a t r i x
i n t dfsnum [ 1 2 8 ] ; / / when each v e r t e x i s f i r s t v i s i t e d
i n t num = 0 ; / / g l o b a l c o u n t e r f o r dfsnum [ ]
i n t c o l o u r [ 1 2 8 ] ; / / 0 = whi t e , 1 = graph , 2 = b l a c k

void d f s ( i n t u ) {
c o l o u r [ u ] = 1 ; / / mark v e r t e x gray
dfsnum [ u ] = num++;
f o r ( i n t v = 0 ; v < 128 ; ++v ) {

i f ( g raph [ u ] [ v ] && c o l o u r [ v ] == 0) {
d f s ( v , u ) ;

}
}
c o l o u r [ u ] = 2 ; / / mark v e r t e x b l a c k

}
In the above code, note that we only recurse if v is a white vertex. If we consider all the edges

from gray to white vertices, we get what is called DFS Tree. The DFS tree shows how the vertices of
the graph were visited in the DFS. Hence, edges that connects from gray to white vertices are called as
Tree Edges. Edges from gray vertices to gray vertices are known as Back Edges since they connect
one vertex to its ancestor in the DFS tree. Edges that go from gray to black vertices are either Cross
Edges or Forward Edges. A cross edge is an edge that connect one DFS branch to another; a forward
edge is an edge from one vertex to its descendant. In most cases, cross edges and forward edges are
not really distinguished and may be classified as cross edges in general. In an undirected graph, there
will be no cross or forward edges.

2 Application 1: Strongly Connected Component
In a directed graph, two vertices a and b are strongly connected iff there exists a path from a to b
AND there exists a path from b to a. The notion of strongly connectedness is an equivalence relation:

• a vertex is strongly connected with itself

• if a is strongly connected to b, then b is strongly connected to a

• if a is strongly connected to b and b is strongly connected to c, then a is strongly connected to c



This means that we can partition an arbitrary directed graph into its strongly connected component.
There are several algorithms to find the strongly connected component of a graph using DFS. We will
describe Tarjan’s Algorithm here.

2.1 Tarjan’s Algorithm
The crucial observation is to note that a strongly connected component must be a subtree of the
DFS tree. In other word, a component cannot be in two different parts of the tree. This means
that to find the strongly connected component, we just need to find the root of the subtrees and
take everything under the root to be in the same component. Furthermore, within the same strongly
connected component, the root will be the vertex that has the smallest dfsnum. Thus, a vertex u
is a root of a strongly connected component iff the smallest dfsnum reachable from u or any of its
children is dfsnum[u]. When we are running the DFS, we can keep a stack of the vertices which
we have visited. Once we discovered the root of a strongly connected component, we can simply pop
off the vertices of the stack until the root is popped off; all these vertices are in the same strongly
connected component.

bool graph [ 1 2 8 ] [ 1 2 8 ] ; / / a d j a c e n c y m a t r i x
i n t s c c [ 1 2 8 ] ; / / t h e s t r o n g l y c o n n e c t e d component o f each v e r t e x
v e c t o r <i n t > s t ; / / t h e s t a c k
i n t num scc = 0 ; / / number o f s t r o n g l y c o n n e c t e d component
i n t dfsnum [ 1 2 8 ] ; / / when each v e r t e x i s f i r s t v i s i t e d
i n t num = 0 ; / / g l o b a l c o u n t e r f o r dfsnum
i n t low [ 1 2 8 ] ; / / s m a l l e s t dfsnum r e a c h a b l e from t h e s u b t r e e

/ / i n i t i a l i z a t i o n : dfsnum and s c c are i n i t a l i z e d t o −1
void SCC( i n t u ) {

low [ u ] = dfsnum [ u ] = num++;
s t . p u s h b a c k ( u ) ;

f o r ( i n t v = 0 ; v < 128 ; ++v ) {
i f ( g raph [ u ] [ v ] && s c c [ v ] == −1) {

i f ( dfsnum [ v ] == −1) SCC( v ) ;
low [ u ] = min ( low [ u ] , low [ v ] ) ;

}
}

i f ( low [ u ] == dfsnum [ u ] ) {
/ / r o o t o f a s t r o n g l y c o n n e c t e d component
whi le ( s c c [ u ] != num scc ) {

s c c [ s t . back ( ) ] = num scc ;
s t . pop back ( ) ;

}
++num scc ;

}
}



3 Application 2: Bridge Detection
In an undirected graph, a bridge is defined to be an edge which if removed, will separate the graph
into two disconnected component. This problem can also be solved by doing a single dfs. The main
observation is that an edge (u, v) cannot be a bridge if it is part of a cycle. Conversely, if (u, v) is not
part of a cycle, it is a bridge. We can detect cycles in dfs by the presence of back edges. Thus, (u, v)
is a bridge iff none of v or v’s children has a back edge to u or any of u’s ancestor. To detect whether
any of v’s children has a back edge to u’s parent, we can use a similar idea above to see what is the
smallest dfsnum reachable from the subtree rooted at v.

bool graph [ 1 2 8 ] [ 1 2 8 ] ; / / a d j a c e n c y m a t r i x
i n t dfsnum [ 1 2 8 ] ; / / when each v e r t e x i s f i r s t v i s i t e d
i n t num = 0 ; / / g l o b a l c o u n t e r f o r dfsnum
i n t low [ 1 2 8 ] ; / / s m a l l e s t dfsnum r e a c h a b l e from t h e s u b t r e e

/ / i n i t i a l i z a t i o n : dfsnum i n i t i a l i z e d t o −1
void b r i d g e d e t e c t i o n ( i n t u ) {

low [ u ] = dfsnum [ u ] = num++;

f o r ( i n t v = 0 ; v < 128 ; ++v ) {
i f ( g raph [ u ] [ v ] && dfsnum [ v ] == −1) {

/ / ( u , v ) i s a t r e e edge
b r i d g e d e t e c t i o n ( v ) ;
i f ( low [ v ] > dfsnum [ u ] )

o u t p u t ( u , v ) a s a b r i d g e

low [ u ] = min ( low [ u ] , low [ v ] ) ;
} e l s e {

/ / ( u , v ) i s a back edge
low [ u ] = min ( low [ u ] , dfsnum [ v ] ) ;

}
}

}

4 Application 3: Articulation Vertex
In an undirected graph, an articulation vertex is a vertex which if removed, will separate the graph
into two disconnected component. This problem is very similar bridge detection and can be imple-
mented with relative little changes to the above code. One thing to take note is that we must handle
the case of the root of the DFS tree differently.

Using the same notation above, a non-root vertex u is an articulation vertex iff there exists a child v
of u in the DFS tree such thatlow[v] >= dfsnum[u]. The root of the DFS tree is an articulation
vertex iff it has more than one child.


