
CPSC 317 COMPUTER NETWORKING

Module 8: Security – Day 4 – Authentication and TLS

ADMINISTRATION

 Student Experience of Instruction Survey is now available and will continue until April 15th

No clickers today

CPSC 317 2023W2 © 2021

2

LEARNING GOALS

- Describe the end-point authentication problem and the pros and cons of various solutions
- Describe the necessary elements of a security protocol: handshake, secret exchange, key derivation, data transfer, termination
- Describe how TLS provides all these elements

READING

-Reading: 8.4, 8.6

CPSC 317 2023W2 © 2021

5

END-POINT AUTHENTICATION

 Goal: Bob wants Alice to "prove" her identity

"On the Internet, nobody knows you're a dog."

CPSC 317 2023W2 © 2021

END-POINT AUTHENTICATION

- Option 1: Alice sends a message with identification
 - Easily spoofed by Trudy

END-POINT AUTHENTICATION

- Option 2: Alice includes own IP, known to Bob
 - Trudy can also spoof an IP and eavesdrop on connection

END-POINT AUTHENTICATION: PASSWORD

- Option 3: use a password
 - If Trudy can eavesdrop, then password is leaked

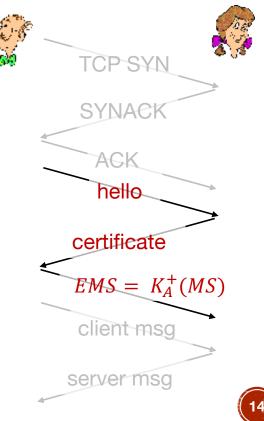
END-POINT AUTHENTICATION: PASSWORD

- Option 3.1: use an encrypted password
 - Trudy can just play it back unmodified
 - Trudy doesn't need original password if encryption is always the same
 - Called replay attack

END-POINT AUTHENTICATION: NONCE

- Option 4: Bob sends one-time message (R) to Alice, Alice returns same message encrypted with shared key
 - Bob can then confirm Alice knows the shared encryption key
 - Requires a pre-established secret key
 - Password could be used, but relies on the password itself being secure enough

END-POINT AUTHENTICATION: NONCE


- Option 5: Bob sends one-time message (*R*) to Alice, Alice returns message encrypted with K_A^-
 - Only reliable if Bob has a way to confirm K_A^+ is actually Alice's
 - Subject to man-in-the-middle attack

BUILDING A SECURITY PROTOCOL

- To build a complete security protocol, we need to provide:
 - Handshake: Alice, Bob use their certificates to authenticate each other, and private keys to share secret
 - Key derivation: Alice, Bob use shared secret to derive keys
 - Data transfer: series of messages ("records")
 - Connection termination: securely close connection

SECURITY PROTOCOL – HANDSHAKE

- Bob establishes TCP connection with Alice
- Bob verifies Alice's identity (certificate)
- Bob sends Alice master secret key MS
 - Used to generate all other keys for session
- Potential issue
 - 3 RTTs before client can start receiving data

CPSC 317 2023W2 © 2021

SECURITY PROTOCOL – KEY DERIVATION

Alice and Bob generate the same four keys:

- *K_B*: encryption key for data sent from Bob to Alice
- M_B : MAC key for data sent from Bob to Alice
- *K*_A: encryption key for data sent from Alice to Bob
- M_A : MAC key for data sent from Alice to Bob
- Keys derived from predetermined key derivation function (KDF)
 - Process could be as simple as splitting MS into 4 parts

SECURITY PROTOCOL – DATA TRANSFER

- Recall: TCP provides byte stream abstraction
- Where would MAC go?
 - Can't wait until end of transmission

SECURITY PROTOCOL – DATA TRANSFER

- Data is broken into individual "records"
- Each record carries a MAC, created using M_A or M_B
- Receiver can act on each record as it arrives
- To send message m with length l from Alice to Bob, send: $K_A(l, m, H(m + M_A))$

SECURITY PROTOCOL – DATA TRANSFER –V2

But we should be doing encrypt, then MAC

• To send message m with length l from Alice to Bob, send: $H(K_A(l,m) + M_A), K_A(l,m)$

SECURITY PROTOCOL – DATA TRANSFER

Possible attack on data stream:

- Reordering (attacker intercepts TCP segments and manipulates sequence numbers)
- Replay (same TCP message sent twice, manipulating TCP)
- Solution:
 - Include sequence number n in MAC computation
 - Use $H(K_A(l,m) + M_A + n)$ as hash

SECURITY – CONNECTION TERMINATION

Possible attack on data stream:

- Attacker forges TCP connection close segment (truncation attack)
- Solution: special message type for closure
- To send regular message m with length l and sequence number n from Alice to Bob, send:

 $H(K_A(l, 0, m) + M_A + n), K_A(l, 0, m)$

 To send closing message m with length l and sequence number n from Alice to Bob, send:

 $H(K_A(l, 1, m) + M_A + n), K_A(l, 1, m)$

CPSC 317 2023W2 © 2021

TRANSPORT-LAYER SECURITY (TLS)

- Widely deployed security protocol above the transport layer
- Technically application layer, but could be thought of as an in-between layer
- Replaces the Secure Socket Layer (SSL) protocol
- TLS is built to support any type of application
 - Example: HTTPS is HTTP with messages sent over SSL/TLS

TRANSPORT-LAYER SECURITY (TLS)

- Confidentiality: via symmetric encryption
- Integrity: via MAC
- Authentication: via public key cryptography and certificates

TRANSPORT-LAYER SECURITY (TLS)

- TLS supports several algorithms for:
 - Key generation
 - Encryption
 - MAC
 - Digital signature
- Cipher suite: choice of algorithms negotiated during handshake
 - Client sends supported cipher suites
 - Server chooses one of the supported cipher suites

QUIC

- Transport-layer protocol running on top of UDP
- Provides reliability of TCP, plus security of TLS
 - Can combine connection establishment and security handshake
- Standardized in RFC 9000

IN-CLASS ACTIVITY

ICA84

CPSC 317 2023W2 © 2021

25