CPSC 317 convitur networring

Module 8: Security - Day 2 - Encryption

Some slides based on Kurose/Ross original slides, found at https://gaia.cs.umass.edu/kurose ross/ppt.htm CPSC 317 2023W2 © 2021

LEARNING GOHLS

- Explain different classes of attacks on cryptography schemes
- Explain and use substitution ciphers
- Explain the uses and limitations of shared key or symmetric cryptography
- Explain how keys can be exchanged using Diffie-Hellman protocol

READING

- Reading: 8.3

THE LANGUAGE OF CRYPTOGRAPHY

-

$K_{A}(m)$: ciphertext, encrypted with key K_{A} $K_{B}\left(K_{A}(m)\right)=m$

THE LANGUAGE OF CRYPTOGRAPHY (HLTERNATE NOTATION)

$\operatorname{Enc}\left(K_{A}, m\right)=m^{\prime}$: run algorithm Enc on m with key K_{A} to generate cipher m^{\prime} $\operatorname{Dec}\left(K_{B}, m^{\prime}\right)=\operatorname{Dec}\left(K_{B}, \operatorname{Enc}\left(K_{A}, m\right)\right)=m$: run algorithm Dec with key K_{B} on cipher m^{\prime} to retrieve m

BREAKING AN ENCRYPTION SCHEME

- Ciphertext-only attack:
- Trudy has ciphertext, but not plaintext (e.g., knows $K_{A}(m)$ but not m)
- Option 1: brute force, search through all keys
- Option 2: statistical analysis (look for patterns)
- Known-plaintext attack:
- Trudy has some ciphertext with its plaintext (e.g., for some m it knows $K_{A}(m)$), wants to break other ciphertexts
- Chosen-plaintext attack:
- Trudy has the ability to encrypt any plaintext (e.g., knows K_{A}, or can trick Alice into encrypting any message), but doesn't have key for decryption

SYMMETRIC KEY CRYPTOGRAPHY

- Symmetric key cryptography: Bob and Alice share same (symmetric) key: K_{S}
- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- Method may be different (opposite) for decryption, but uses same key

SIMPLE ENCRYPTION SCHEME

- Substitution Cipher: substitute one thing for another
. "Thing" can be a byte, block, word, etc.
- Monoalphabetic cipher: substitute one letter for another
- Encryption key: mapping from one set to another
- Example:

```
abcdefghijklmnopqrstuvwxyz
\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow
mnbvcxzasdfghjklpoiuytrewq
```

- Similar to the Caesar cipher, but the mapping is less regular

CLICKER QUESTION

Assuming the encryption mapping below:

```
abcdefghijklmnopqrstuvwxyz
\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow
mnbvcxzasdfghjklpoiuytrewq
```

Decrypt the following message:

LKUMUK

SLGGHTHY BETTER ENCRYPTION

- Several substitution ciphers (e.g., $M_{1}, M_{2}, \ldots, M_{n}$)
- Predictable pattern of ciphers, e.g.,
- Cycling pattern (e.g., $M_{1} \rightarrow M_{3} \rightarrow M_{3} \rightarrow M_{2}$)
- Algorithm that decides next pattern
- For each new symbol, use next substitution pattern
- Encryption key: all ciphers, plus pattern

Plaintext:	abcdefghijklmnopqrstuvwxyz
$\downarrow \downarrow \downarrow$	
$M_{1}:$	mnbvcxzasdfghjklpoiuytrewq
$M_{2}:$	gclafmvqjdkerouwtisbphynxz
$M_{3}:$	xyzuvwrstpqmnojklghidefabc

CLICKER QUESTION

Assuming the encryption mapping below, where patterns M_{1} and M_{2} alternate (M_{1} first):

$$
\begin{array}{rc}
\text { Plaintext: } & \text { abcdefghijklmnopqrstuvwxyz } \\
\\
\downarrow \\
M_{1}: & \text { mnbvcxzasdfghjklpoiuytrewq } \\
M_{2}: & \text { gclafmvqjdkerouwtisbphynxz }
\end{array}
$$

Decrypt the following message:
KOSUJS

BLOCK CIPHERS

- Message is broken into blocks (e.g., 64-bit blocks)
-Each block is encrypted/decrypted separately
- Encryption method can be as simple as a substitution cipher
- Substitution table for 64-bit blocks would require 2^{64} entries!
- An algorithm can create a substitution table based on a given key

BLOCK CIPHERS PLUS...

- Keeping the same substitution can be risky
- Allows for statistical analysis of common substitutions
- To avoid this we can change the substitution for every block
- Option 1: change the key every time (e.g., cyclic pattern)

CIPHER-BLOCK CHAINING (CBC)

- Option 2: Do an additional operation with the plaintext - Viable if both parties know what the operation is
-First block is XOR'ed with an arbitrary (randomly chosen) number known by both parties (initialization vector or IV) and then encrypted using a substitution cipher with K_{s}
- Following blocks are XOR'ed with previous block, then encrypted
- C[0]: IV
- $\mathrm{C}[1]=\mathrm{K}_{\mathrm{s}}(\mathrm{M}[0] \oplus \mathrm{C}[0])$
- C $[i+1]=K_{s}(M[i] \oplus C[i])$
- Decryption: apply the (reverse) substitution using K_{s}, then XOR with previous block

DES: DATA ENCRYPTION STANDARD

-56-bit symmetric key, 64-bit plaintext input blocks

- Block cipher: substitution derived from symmetric key
- Cipher block chaining: initial vector derived from symmetric key
- Not considered secure any longer
- DES challenge: 56-bit-key encrypted phrase decrypted with brute force (1997-96 days, 1998-41 days then 56 hours, $1999-22$ hours)
-3DES: more secure
- Encrypt 3 times with 3 different keys

AES: ADVANCED ENCRYPTION STANDARD

- Symmetric key, replaced DES as NIST standard in 2001
- 128-bit block cipher
- 128-, 192- or 256-bit key
- Difference is just the number of rounds of translation
- Way more secure than DES
- Brute force decryption that takes 1 second for DES would take 149 trillion years for 128-bit AES

WHO KNOWS THE KEY?

- Both receiver and sender must know the key
- Sender needs it for encryption
- Receiver needs it for decryption
- Each connection pair must have its own key
- Sharing keys with other peers dilutes the trust

WHO KNOWS THE KEY?

- What if sender and receiver never negotiated a key before?
- Key can be generated when a connection first starts
- How can peers share the key with each other?

KEY EXCHANGE

- Two parts of a key: public and private
- Combine public key of Alice with private key of Bob and vice versa
- You can easily get public key from private key but you cannot get the private key from the public key alone

CPSC 317 2023W2 © 2021

DIFFIE-HELLMAN KEY EXCHANGE

- Exponentiation modulo algorithm
- Alice and Bob agree on key generators: p (prime number) and g (exponentiation base)

CPSC 317 2023W2 © 2021

IN-CLASS ACTIVITY

- ICA82

