
Module 8: Security – Day 2 - Encryption

CPSC 317 2023W2 © 2021

1

Some slides based on Kurose/Ross original slides, found at https://gaia.cs.umass.edu/kurose_ross/ppt.htm

https://gaia.cs.umass.edu/kurose_ross/ppt.htm

§Explain different classes of attacks on cryptography schemes
§Explain and use substitution ciphers
§Explain the uses and limitations of shared key or symmetric
cryptography

§Explain how keys can be exchanged using Diffie-Hellman
protocol

CPSC 317 2023W2 © 2021 2

§Reading: 8.3

CPSC 317 2023W2 © 2021 3

5

𝑚: plaintext message
𝐾! 𝑚 : ciphertext, encrypted with key KA

𝐾" 𝐾! 𝑚 = 𝑚

plaintext plaintextciphertext

𝐾!

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

𝐾"

CPSC 317 2023W2 © 2021

6

𝑚: plaintext message
𝐸𝑛𝑐(𝐾!, 𝑚) = 𝑚′: run algorithm 𝐸𝑛𝑐 on 𝑚	with key 𝐾𝐴 to generate cipher 𝑚′
𝐷𝑒𝑐 𝐾𝐵, 𝑚# = 	𝐷𝑒𝑐 𝐾𝐵, 𝐸𝑛𝑐(𝐾!, 𝑚) = 𝑚: run algorithm 𝐷𝑒𝑐 with key 𝐾𝐵 on

cipher 𝑚# to retrieve 𝑚

plaintext plaintextciphertext

𝐾!

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

𝐾"

CPSC 317 2023W2 © 2021

§Ciphertext-only attack:
§ Trudy has ciphertext, but not plaintext (e.g., knows 𝐾# 𝑚 but not 𝑚)
§ Option 1: brute force, search through all keys
§ Option 2: statistical analysis (look for patterns)

§Known-plaintext attack:
§ Trudy has some ciphertext with its plaintext (e.g., for some 𝑚 it knows
𝐾# 𝑚), wants to break other ciphertexts

§Chosen-plaintext attack:
§ Trudy has the ability to encrypt any plaintext (e.g., knows 𝐾#, or can trick

Alice into encrypting any message), but doesn’t have key for decryption

CPSC 317 2023W2 © 2021 7

§Symmetric key cryptography: Bob and Alice share same
(symmetric) key: 𝐾#
§ e.g., key is knowing substitution pattern in mono alphabetic

substitution cipher
§ Method may be different (opposite) for decryption, but uses same key

8

plaintext plaintext

𝐾$

encryption
algorithm

decryption
algorithm

ciphertext
𝐾$ 𝑚

𝐾$

CPSC 317 2023W2 © 2021

𝑚
Or 𝐸𝑛𝑐(𝐾$, 𝑚)

𝐷𝑒𝑐(𝐾𝑆, 𝐸𝑛𝑐(𝐾$, 𝑚))
= 𝑚

§Substitution Cipher: substitute one thing for another
§ “Thing” can be a byte, block, word, etc.
§ Monoalphabetic cipher: substitute one letter for another
§ Encryption key: mapping from one set to another
§ Example:

§Similar to the Caesar cipher, but the mapping is less regular

CPSC 317 2023W2 © 2021 9

abcdefghijklmnopqrstuvwxyz
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
mnbvcxzasdfghjklpoiuytrewq

Assuming the encryption mapping below:

Decrypt the following message:
LKUMUK

CPSC 317 2023W2 © 2021 10

abcdefghijklmnopqrstuvwxyz
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
mnbvcxzasdfghjklpoiuytrewq

§Several substitution ciphers (e.g., 𝑀$, 𝑀%, … ,𝑀&)
§Predictable pattern of ciphers, e.g.,

§ Cycling pattern (e.g., 𝑀% → 𝑀& → 𝑀& → 𝑀')
§ Algorithm that decides next pattern

§For each new symbol, use next substitution pattern
§Encryption key: all ciphers, plus pattern

CPSC 317 2023W2 © 2021 12

Plaintext: abcdefghijklmnopqrstuvwxyz
 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
 M1: mnbvcxzasdfghjklpoiuytrewq
 M2: gclafmvqjdkerouwtisbphynxz
 M3: xyzuvwrstpqmnojklghidefabc

Assuming the encryption mapping below, where patterns 𝑀$
and 𝑀% alternate (𝑀$	first):

Decrypt the following message:
KOSUJS

CPSC 317 2023W2 © 2021 13

Plaintext: abcdefghijklmnopqrstuvwxyz
 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
 M1: mnbvcxzasdfghjklpoiuytrewq
 M2: gclafmvqjdkerouwtisbphynxz

§Message is broken into blocks (e.g., 64-bit blocks)
§Each block is encrypted/decrypted separately
§Encryption method can be as simple as a substitution cipher

§ Substitution table for 64-bit blocks would require 2() entries!

§An algorithm can create a substitution table based on a
given key

CPSC 317 2023W2 © 2021 15

§Keeping the same substitution can be risky
§ Allows for statistical analysis of common substitutions

§To avoid this we can change the substitution for every block
§Option 1: change the key every time (e.g., cyclic pattern)

CPSC 317 2023W2 © 2021 16

§Option 2: Do an additional operation with the plaintext
§ Viable if both parties know what the operation is

§First block is XOR’ed with an arbitrary (randomly chosen) number
known by both parties (initialization vector or IV) and then
encrypted using a substitution cipher with Ks

§Following blocks are XOR’ed with previous block, then encrypted
§ C[0]: IV
§ C[1] = Ks(M[0] ⨁ C[0])
§ C[i+1] = Ks(M[i] ⨁ C[i])

§Decryption: apply the (reverse) substitution using Ks, then XOR
with previous block

CPSC 317 2023W2 © 2021 17

§56-bit symmetric key, 64-bit plaintext input blocks
§ Block cipher: substitution derived from symmetric key
§ Cipher block chaining: initial vector derived from symmetric key

§Not considered secure any longer
§ DES challenge: 56-bit-key encrypted phrase decrypted with brute

force (1997 – 96 days, 1998 – 41 days then 56 hours, 1999 – 22 hours)
§3DES: more secure

§ Encrypt 3 times with 3 different keys

CPSC 317 2023W2 © 2021 18

§Symmetric key, replaced DES as NIST standard in 2001
§128-bit block cipher
§128-, 192- or 256-bit key

§ Difference is just the number of rounds of translation

§Way more secure than DES
§ Brute force decryption that takes 1 second for DES would take 149

trillion years for 128-bit AES

CPSC 317 2023W2 © 2021 19

§Both receiver and sender must know the key
§ Sender needs it for encryption
§ Receiver needs it for decryption

§Each connection pair must have its own key
§ Sharing keys with other peers dilutes the trust

CPSC 317 2023W2 © 2021 20

§What if sender and receiver never negotiated a key before?
§Key can be generated when a connection first starts

§ How can peers share the key with each other?

CPSC 317 2023W2 © 2021 21

§ Two parts of a key: public and private
§ Combine public key of Alice with private key of Bob and vice versa
§ You can easily get public key from private key but you cannot get the

private key from the public key alone

CPSC 317 2023W2 © 2021 22

Alice Bob

public key public key

private key private key

shared key shared key

§ Exponentiation modulo algorithm
§ Alice and Bob agree on key generators:
p (prime number) and g (exponentiation base)

CPSC 317 2023W2 © 2021 23

Alice Bob

public key
A = ga mod p

public key
B = gb mod p

private key
a

private key
b

shared key
gab mod p

shared key
gab mod p

§ ICA82

CPSC 317 2023W2 © 2021 24

