CPSC 317 COMPUTER NETWORKING

Module 7: Link Layer – Day 4 – Physical and Link Layer Issues

LEARNING GOALS

The physical layer and advanced link layer issues

- Describe how bits are transmitted on a medium
- Explain the timing of sending and receiving bits and packets
- Enumerate and describe the various media that can be used at the physical layer
- Describe the purpose and mechanism of VLANs
- Describe the unique problems of data-center computing
- Describe the possible architectures of data-center networking

READING

-Reading: 1.2.1, 1.2.2, 6.4.4, 6.6

CPSC 317 2023W2 © 2021

THE PHYSICAL LAYER

There are many different media that can support networking

- Co-axial cable
- Twisted pair (phone cables)
- Fiber
- Radio
 - WiFi
 - Bluetooth
 - Cellular
 - Satellite

Copper Twisted Insulation wire pairs with color-coded plastic insulation Twisted pairs with Copper Pair color-coded shields plastic mesh insulation Overall shield Outer Outer Outer jacket jacket jacket Shielded twisted pair Unshielded twisted pair Coaxial

CPSC 317 2023W2 © 2021

MODULATION

- How bits are put on the medium is an electrical engineering issue, but generally there is a "carrier" signal which is modulated to contain the data
- AM
 - Amplitude modulation
- FM
 - Frequency modulation
- PM
 - Phase modulation

AMPLITUDE MODULATION

Modulated Result

FREQUENCY MODULATION

Modulated Result

PHASE MODULATION

CPSC 317 2023W2 © 2021

SENDING THE BITS

- Almost all physical networks send the bits of the message one at a time on the medium
 - Code-Division multiplexing complicates this because a single code symbol generally encodes more than one bit
- The timing of when bits are sent is determined by the bandwidth of the medium
 - 10 Mbps: one bit every 100ns
 100 Mbps: one bit every 10ns
 - I Gbps: one bit every 1ns

100 Mbps: one bit every 10ns 10 Gbps: one bit every 100ps

 The timing of when bits arrive is determined by the propagation time and the send timing

A SCENARIO

- A sender is sending 8 bits to a receiver
- Propagation time is 5 time units
- Transmission time is 1 time unit per bit
- A realistic scenario:
 - 100Mbps network
 - Distance between sender and receiver is 10 metres
 - A time unit is 10ns
 - In 50ns the signal will travel 50 * 10^-9 * 2*10^8 = 10m

Sender sending 01001110

Receiver

Time 0

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

Time 2

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

0

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

0

Time 12

CPSC 317 2023W2 © 2021

Sender sending 01001110

Receiver

Time 13

CPSC 317 2023W2 © 2021

TIME TO DELIVER A MESSAGE

- Transmission time
 - I time unit per bit
- Propagation time (bit)
 - Only for the last bit
- Total time = Transmission time + Propagation time
 - A sender is sending 8 bits to a receiver
 - Propagation time is 5 time units
 - Transmission time is 1 time unit per bit
 - Total time = 5 * 1 + 8 = 13

A PROBLEM WITH LANS

- Having a single large LAN is sometimes less than ideal
 - All broadcast traffic goes to every adapter
 - Privacy and security
 - Anyone using Wireshark can see any frames
- Creating separate LANs would solve the problem
 - One LAN for each group in a company, for example
 - But each LAN needs a switch
 - Many small switches are more expensive than a single large switch

WHAT IF WE COULD ..

- Have multiple virtual LANs using a single switch
- Enter the Virtual Local Area Network VLAN
- Since switches contain software forwarding already, it is possible to create multiple VLANs on a single switch
 - Identified by port
 - Identified by MAC address
- With a bit more software, the switch hardware can also be the router that connects these VLANs together

- The networking needs of data centers are unique
- 10,000 100,000 of computers in a small space
- Distributed algorithms run on these computers
 - Spark, Hadoop, TensorFlow, etc
 - Communication is a key component
- How are these things connected together?

AWS engineer at work in a DC

CPSC 317 2023W2 © 2021

AWS engineer at work in a DC

CPSC 317 2023W2 © 2021

Racks of servers

1 rack-mounted server (or blade)

- Ethernet cables

Not shown: power, cooling, UPS (battery) systems, etc. Traditional Cooling Diagram

UNIVERSITY DATA CENTER (UDC)

CPSC 317 2023W2 © 2021

https://it.ubc.ca/projects/new-university-data-centre-udc

- The networking needs of data centers are unique
- 10,000 100,000 of computers in a small space
- Distributed algorithms run on these computers
 - Spark, Hadoop, TensorFlow, etc
 - Communication is a key component
- How are these things connected together?

A HIERARCHICAL STRUCTURE

Figure 5.30 • A data center network with a hierarchical topology

DATA CENTER CHARACTERISTICS

- Network speeds up to 100 Gbps
- 20-40 servers per rack
- How efficient is communication in this setting?
 - Within a rack?
 - Between racks?

CLICKER QUESTION

40 servers per rack 100Gbps bandwidth

Suppose all 40 servers in a rack need to talk to a different server in the same rack. What is the bandwidth of each connection?

- A. 100Gbps
- B. 2.5Gbps

CPSC 317 2023W2 © 2021

CLICKER QUESTION

40 servers per rack 100Gbps bandwidth

Suppose all 40 servers in one rack need to talk to the corresponding server in a different rack. What is the bandwidth of each connection?

- A. 100Gbps
- B. 2.5Gbps
- C. It depends on where the two racks are physically

A RICHER INTERCONNECTION STRUCTURE

Figure 5.31
 Highly-interconnected data network topology

A RICHER INTERCONNECTION STRUCTURE

CPSC 317 2023W2 © 2021

IN-CLASS ACTIVITY

None

CPSC 317 2023W2 © 2021