CPSC 317 COMPUTER NETWORKING

2023W2: Transport – Day 6 – Flow + Congestion Control and TCP

READING

-Reading: 3.5.2, 3.5.4, 3.5.5

CPSC 317 2023W2 © 2021

ADMINISTRATION

PA3 starts today

Fixing bug with calculation of extension hours used

CPSC 317 2023W2 © 2021

LEARNING GOALS

- Explain the concept of flow control, and how a sliding window protocol can implement it
- Explain the concept of congestion control, and how a sliding window protocol can implement it

LEARNING GOALS

TCP

- Describe and analyze strategies for controlling the sending window size with respect to congestion
- Describe and analyze strategies for how the receiver can control how much data the sender can send before pausing and waiting for buffers to empty
- Trace the sending of packets/ACKS and how sequence numbers are used in TCP
- Trace how TCP sets up a connection
- Trace how TCP terminates a connection

FLOW CONTROL

- Should we always send the full window size?
- What if the receiving application is slow in accepting new data?
 - Packets will accumulate in the receiver's buffer
 - Eventually buffer will be full, packets will be dropped
 - Immediately re-sending this data does not resolve the problem
- Receiver will notify the sender how much data it can handle
 - This information is usually included in the ACK
 - Sender adjusts its window size based on this information
 - Why can't the receiver just not ACK the extra data?

CONGESTION CONTROL

- What if the network can't handle a full window's worth of data?
 - Packets and ACKs will be dropped by the routers
- Missing ACKs are a sign that there is congestion somewhere (in either direction)
- Sender can reduce sender window once congestion is detected
 - Example: if some number of ACKs are missing in a period of time
- If all packets are ACKed, we can increase the window again

EFFECT ON THROUGHPUT

- Throughput is affected by
 - Bandwidth of sender's direct network connection
 - Receiver's specified window size (flow control)
 - Sender's adjusted window size (congestion control)
- If sender's direct connection is not the bottleneck:
 - Another router will experience congestion elsewhere
 - Congestion control will reduce transmission speed

RECAP

- We've built reliable delivery on top of an unreliable network (lower-level protocol)
- We realized we need more packets in flight, and introduced send windows
 - GBN vs SR
- We've talked about flow control (a slow receiver)
- We've talked about congestion control (a busy network)
- Now we are going to see what a real protocol looks like

TCP: OVERVIEW

RFCs: 793, 1122, 1323, 2018, 2581

- point-to-point:
 - exactly two participants
- connection-oriented:
 - handshaking (exchange of control msgs) initializes sender, receiver state before data exchange
- full duplex data:
 - bi-directional data flow in same connection
 - (sometimes we may talk about data flow in only one direction)

- send & receive buffers
- reliable, in-order byte stream:
 - no "message boundaries"
 - MSS: maximum segment size
- pipelined:
 - TCP congestion and flow control set window size
- flow controlled:
 - sender will not overwhelm receiver

TCP SEGMENT FORMAT

- SYN conn. start, synchronize seq#
- FIN conn. close, no new data from sender
- RST reset conn. (rejected connection)
- ACK indicate that ACK # is set
- PSH sender pushed the accumulated send buffer
- URG segment contains "urgent" data; combined with urgent data pointer, points to the data to be delivered before other data.
- ECE ECN-Echo, indicate ECN capability
- CWR congestion window reduced

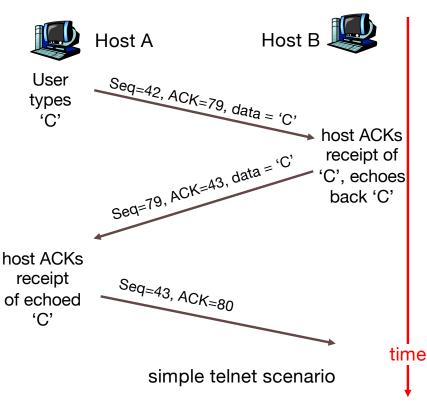
CPSC 317 2023W2 © 2021

32 bits						
Source port #					Destination port #	
Sequence Number						
Acknowledgement Number						
Hdr Len	Not used	CWR ECE	URG ACK	PSH RST	FIN	Receiver Window
Checksum					Urgent Data Pointer	
Options (optional, variable length)						
Application payload (optional, variable length)						

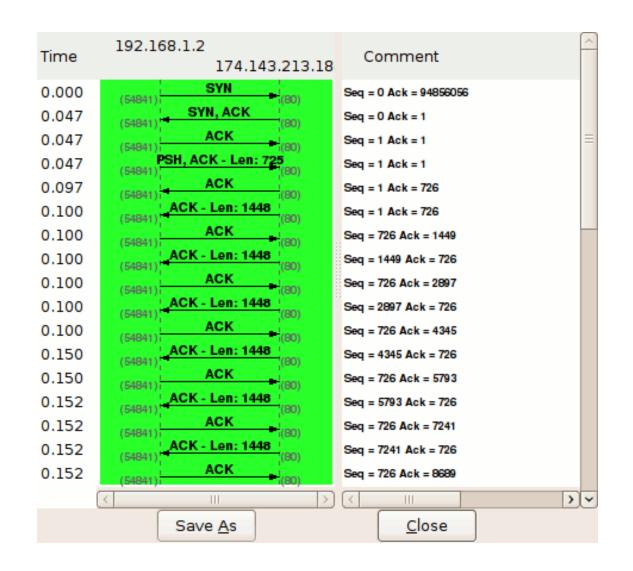
For information only, you will not be tested on the format of the header

TCP SEQUENCE NUMBERS AND ACKS

- Each byte of a TCP segment has a sequence number
- The sequence number of a segment is the sequence number of its first byte
- ACKs correspond to the first sequence number not yet received (similar to Go-Back-N, but byte-based and +1)
- Receiver stores packets in its own window (like Selective-Repeat)
- ACKs are cumulative (like Go-Back-N)


TCP SEQ. #'S AND ACKS

Seq. #'s:


 byte stream "number" of first byte in segment's data

ACKs:

- seq # of next byte expected from other side
- cumulative ACK

CPSC 317

CPSC 317

TCP WINDOW MANAGEMENT

- The receiver has a flow control window
 - Size is measured in bytes
 - Size is selected by the application (if not the default)

TCP WINDOW MANAGEMENT (II)

The sender has a congestion window

- Size is measured in segments
- Size is determined by the presence or absence of congestion
- Actual send window is the minimum of the flow control window (advertised by the receiver) and the (scaled) congestion window (computed by the sender)

IN-CLASS ACTIVITY

ICA46

TCP sequence and ack numbers

CPSC 317 2023W2 © 2021