CPSC 317 COMPUTER NETWORKING

2023W2: Transport - Day 2 - State Machines and Reliability

READING

- Reading: 3.4.1

CPSC 317 2023W2 © 2021

2

LEARNING GOALS

Protocols and state machines

- Given a protocol, express it as a set of communicating finite state machines (FSMs)
- Given a set of communicating FSMs, trace the execution of the protocol for various event scenarios
- Given a set of communicating FSMs, analyze the execution of the state machines to determine whether or not the protocol operates correctly and propose ways to solve any problems

LEARNING GOALS

Alternating Bit Protocol

- Describe/build/execute/trace the various versions of the alternating bit protocol (stop and wait) protocol
- Explain how corruption in segments are detected and at what layer(s) in the protocol stack this is done
- Explain how corruption in segments is handled by a reliable delivery protocol

REMINDER: PROTOCOLS

- From the textbook: A protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of a message or other event
- Key concepts:
 - Format and order of messages
 - Actions to be taken on events
- A fully-defined protocol must provide a proper action for any event in any state

PROTOCOL EXAMPLE: GREETING THE QUEEN

- Don't speak until spoken to
- Upon presentation to the Queen
 - Men do a neck bow
 - Women a slight curtsy
- Queen speaks to you
 - First salutation is "Your Majesty"
 - Subsequently it is "Ma'am"

QUEEN GREETING PROTOCOL STATE MACHINE

BUILDING A RELIABLE PROTOCOL (V.0)

- Let's create a protocol for reliable delivery
 - Send only one segment at a time
 - Identify when sending is allowable action
 - Enumerate events and actions for both sender and receiver
 - Draw state machine
- Initial scenario assumptions
 - One sender, one receiver
 - Data to send comes from upper layer
 - Segments are never lost, never corrupted

STATE MACHINE: RELIABLE CHANNEL

Receive data Deliver data

Data to send Send data

WHAT COULD GO WRONG?

• We have assumed that nothing bad ever happens

• What bad things could happen in a real-world scenario?

CPSC 317 2023W2 © 2021

11

BUILDING A RELIABLE PROTOCOL (V.1)

- Let's create a protocol for reliable delivery
 - Send only one segment at a time
 - Identify when sending is allowable action
 - Identify when re-sending is required
 - Enumerate events and actions for both sender and receiver
 - Draw state machine
- Next scenario assumptions
 - One sender, one receiver
 - Data to send comes from upper layer
 - Segments are never lost, but may be corrupted

POSSIBLE EVENTS AND ACTIONS

Receiver

- Segment received without problems
 - Send ACK
- Segment received corrupted
 - Send NAK

Sender

- Data ready to send
 - Send data
- Receive ACK
 - Get ready to send more data
- Receive NAK
 - Re-send data

STATE MACHINE: CORRUPTION SCENARIO

THE ACK/NAK MIGHT BE CORRUPTED

• What if the ACK/NAK is corrupted?

- Sender cannot be sure if the receiver received the previous segment
- What can the sender do after receiving a corrupted ACK/NAK?
 - Ignore the corrupt ACK/NAK?
 - Treat it as an ACK?
 - Treat it as a NAK?

STATE MACHINE: CORRUPTION OPTION I

THE ACK/NAK MIGHT BE CORRUPTED

• What if the ACK/NAK is corrupted?

- Sender cannot be sure if the receiver received the previous segment
- What can the sender do after receiving a corrupted ACK/NAK?
 - Ignore the corrupt ACK/NAK?
 - Everything stops
 - Treat it as an ACK?
 - Treat it as a NAK?

STATE MACHINE: CORRUPTION OPTION II

THE ACK/NAK MIGHT BE CORRUPTED

• What if the ACK/NAK is corrupted?

- Sender cannot be sure if the receiver received the previous segment
- What can the sender do after receiving a corrupted ACK/NAK?
 - Ignore the corrupt ACK/NAK?
 - Everything stops
 - Treat it as an ACK?
 - If it was a NAK, the receiver never receives the data
 - Treat it as a NAK?

STATE MACHINE: CORRUPTION OPTION III

THE ACK/NAK MIGHT BE CORRUPTED

• What if the ACK/NAK is corrupted?

- Sender cannot be sure if the receiver received the previous segment
- What can the sender do after receiving a corrupted ACK/NAK?
 - Ignore the corrupt ACK/NAK?
 - Everything stops
 - Treat it as an ACK?
 - If it was a NAK, the receiver never receives the data
 - Treat it as a NAK?
 - If it was an ACK, the receiver receives the data twice

DEALING WITH DUPLICATE TRANSFER

- How can the receiver deal with a duplicate segment?
- What information needs to be included to allow receiver to identify segment as duplicate?
- Reminder: scenario does not lose data, only corrupts

POSSIBLE EVENTS

Receiver

- Segment 0 received without problems
- Segment 1 received without problems
- Segment received corrupted

Sender

- Data ready to send
- Receive ACK 0
- Receive ACK 1
- Receive NAK
- Receive corrupt response

ALTERNATING BIT PROTOCOL

CLICKER QUESTION

Is this state machine complete?

Receive ACK 0/corrupt

IN-CLASS ACTIVITY

ICA42

Create FSMs for DNS servers

CPSC 317 2023W2 © 2021

33