
2023W2: Transport – Day 1 – Introduction and UDP

CPSC 317 2023W2 © 2021

1

§Reading: 3.1, 3.2, 3.3

CPSC 317 2023W2 © 2021 2

§ Explain the need and main purpose of the transport layer
§ Define multiplexing at the transport level (i.e., ports)
§ Understand the types of services that transport can support
§ Compare and contrast the important services provided by UDP and TCP
§ Identify applications that (can) make use of TCP (UDP) and explain why
§ Explain the purpose of the fields of the UDP header
§ Use UDP sockets in Java

CPSC 317 2023W2 3

§ Provide logical communication
between application processes
running on different hosts

§ Multiplexing of communication to
different applications on end hosts

§ Provide services to applications

CPSC 317 2023W2 4

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

§ Network layer provides logical
communication between hosts
(terminated at the interface)

§ Transport layer: provides logical
communication between processes
(terminated at the application)

§ Transport protocols run in end systems
§ send side: breaks app messages into

segments, passes to network layer
§ recv side: reassembles segments into

messages, passes to app layer

CPSC 317 2023W2 5

Application

Transport

Network

Link

Host1

App1

Transport

Network

Link

Host2

App2

A application is identified by a transport layer address: <IP address, port>
IP address: gets you to the host (technically the interface, but the interface
is part of the host)
Port number: gets you to some application process or thread on that host
§ Historically a 16 bit unsigned number (0 – 65535)
§ DICT servers – 2628, DNS servers – 53, HTTP servers (conventionally) – 80
§ And there are hundreds more:

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

CPSC 317 2023W2 © 2021 6

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

§Partial delivery
§Reliable delivery
§Ordered delivery
§Flow control
§Congestion control
§Bidirectional
§Unidirectional

§Connection-oriented
§Connection-less
§Segmentation
§Stream-oriented
§Message-oriented
§Non-duplication

CPSC 317 2023W2 7

Do not memorize this!

CPSC 317 2023W2 © 2021 8

Reliable stream Unreliable packet

Connection No connection

Reliable ordered delivery Best effort

Flow/Congestion control Nope

Possible delays No (transport level) delay

CPSC 317 2023W2 9

Application Application layer
protocol

Transport
protocol

Email SMTP [RFC 2821]

Remote shell access Telnet [RFC 854]
SSH [RFC 4253]

Web HTTP [RFC 2616]

Real-time multimedia Proprietary (Zoom)

Internet telephony Proprietary (Skype)

Domain name DNS [RFC 1035]

Dictionary lookup DICT [RFC 2229]

CPSC 317 2023W2 16

CPSC 317 17

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length (in bytes) of

UDP segment,
including header

Error
detection

Sender:
§ Computes some function on the data
§ Adds the checksum value to the data
§ Sends the data and checksum

Receiver:
§ Computes the same function on the

received data
§ Check if computed checksum equals

received checksum value
§ NO - error detected
§ YES - no error detected

§ Not all errors can be detected

CPSC 317 Module 3 18

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

§Appear at transport layer, network layer, and link layer
§Serve a different purpose at each layer

§Same algorithm at transport and network layer

CPSC 317 Module 3 19

§Treat the data as a sequence of 16-bit integers
§Function: addition (1’s complement sum, carry out added
back in) of all these 16 bit integers

§Checksum is the 1’s complement of the computed value (flip
all the bits)

§Verifying is computing the same function over the data and
checksum (correct if 0)

CPSC 317 2023W2 20

CPSC 317 Module 3 21

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1

CPSC 317 Module 3 22

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1

1 0 0 1 1 0 0 Sum and carry

CPSC 317 Module 3 23

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1

0 1 1 0 0

1 0

0 1 1 1 0

Sum

Add the carry

CPSC 317 Module 3 24

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1

0 1 1 0 0

1 0

0 1 1 1 0

1 0 0 0 1

Sum

Add the carry

1’s complement

CPSC 317 Module 3 25

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1
1 0 0 0 1

1 0 1 1 1 0 1

1 0

1 1 1 1 1

0 0 0 0 0

Sum and carry

Add the carry

1’s complement

Will the Internet checksum be able to detect when one bit has
been erroneously changed?
A. Yes
B. No
C. Sometimes

CPSC 317 2023W2 © 2021 30

Will the Internet checksum be able to detect when two bits
have been erroneously changed?
A. Yes
B. No
C. Sometimes

CPSC 317 2023W2 © 2021 32

CPSC 317 Module 3 34

1 1 0 1 0
0 1 0 0 1
1 0 1 1 0

1 0 0 1 1
1 0 0 0 1

1 0 1 1 1 0 1

1 0

1 1 1 1 1

0 0 0 0 0

Sum and carry

Add the carry

1’s complement

CPSC 317 Module 3 35

1 1 0 1 0
0 1 1 0 1
1 0 0 1 0

1 0 0 1 1
1 0 0 0 1

1 0 1 1 1 0 1

1 0

1 1 1 1 1

0 0 0 0 0

Sum and carry

Add the carry

1’s complement

CPSC 317 2023W2 36

§One more Socket class to learn about
§ DatagramSocket

§And one new message class
§ DatagramPacket

CPSC 317 2023W2 © 2021 37

§Two commonly used constructors
§ DatagramSocket(int port)
§ DatagramSocket() – let the system choose any available port

§Send a message using send
§ socket.send(DatagramPacket packet)

§Receive a message using receive
§ socket.receive(DatagramPacket packet)
§ The incoming information is stored in the provided packet

CPSC 317 2023W2 © 2021 38

§Two commonly used constructors
§ DatagramPacket(byte[] buf, int length)

§ for receiving messages
§ DatagramPacket(byte[] buf, int length, InetAddress addr, int port)

§ for sending messages

§The data comes from or is stored into the provided buffer

CPSC 317 2023W2 © 2021 39

DatagramSocket socket = new DatagramSocket(4445);

void echo() {
byte[] buf = new byte[256];
DatagramPacket packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);
InetAddress address = packet.getAddress();
int port = packet.getPort();
int length = packet.getLength();
packet = new DatagramPacket(buf, length, address, port);
socket.send(packet);

}

CPSC 317 2023W2 © 2021 40

DatagramSocket socket = new DatagramSocket();

String ping(String hostname, int port, String msg) {
byte[] buf = msg.getBytes();
byte[] recvbuf = new byte[256];
InetAddress address = InetAddress.getByName(hostname);
DatagramPacket packet = new DatagramPacket(buf, buf.length, address, port);
socket.send(packet);
packet = new DatagramPacket(recvbuf, recvbuf.length);
socket.receive(packet);
String received = new String(packet.getData(), 0, packet.getLength()));
return received;

}

CPSC 317 2023W2 © 2021 41

§ ICA41

CPSC 317 2023W2 © 2021 42

