CPSC 317 COMPUTER NETWORKING

Module 2: Network Performance – Day 2 – Delay

READING

Reading: 1.4

CPSC 317 2023W2 © 2021

2

ADMINISTRATION

Programming Assignment 1 is on-going

• Quiz 1 will be the week of January 29th

LEARNING GOALS

Delay

- List and define the types of delay and how they contribute to over-all delay
- Calculate the end-to-end delay in a network.
- Perform bottleneck analysis on a path
- Compute traffic intensity and relate traffic intensity to queuing delays
- Calculate link utilization
- Use the formula of Average Delay = S/(1-U) where U is the network utilization and S is the average service time for a single packet (this formula only applies to randomly arriving packets)

RECAP

- Bandwidth
- Latency
- RTT (Round Trip Time)
- Jitter
- Throughput
- Goodput

CLICKER QUESTION

If lightning happens 1km from me, it takes about 3 seconds for me to hear the thunder. What time is that?

- A. Latency
- B. RTT
- C. Bandwidth
- D. Throughput
- E. Goodput

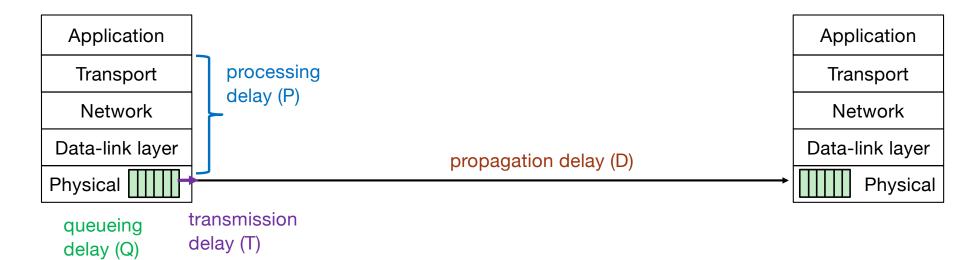

CLICKER QUESTION

Suppose you have a 5 Gbyte movie that you want to download on a 100Mbps link. How long will it take (rounded to the nearest second)? Assume 75Mbps goodput.

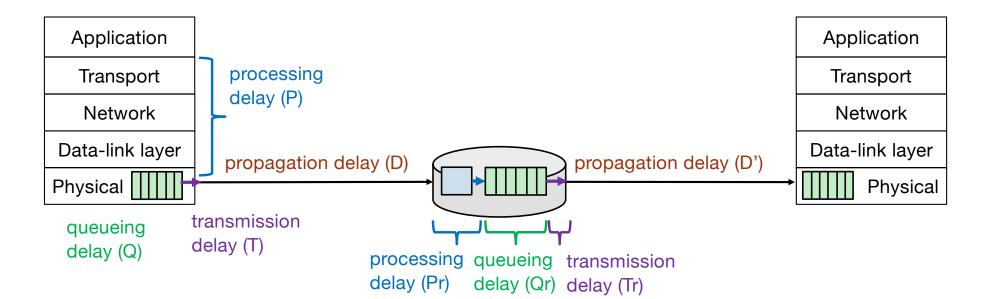
- A. 572 seconds
- B. 533 seconds
- C. 66 seconds
- D. 50 seconds
- E. None of the above

BOTTLENECKS

- What is the maximum throughput possible (bandwidth) between two nodes connected by a network?
 - Can traffic flow at maximum bandwidth in all links?



TYPES OF DELAY


- Processing delay: examine packet to decide where to direct it
- Queueing delay: waiting time to get access to the link
- Transmission delay: time to actually write the packet onto the medium
- Propagation delay: time spent to move each bit from source to destination on the transmission medium
- End-to-end delay: sum of all sources of delay

TYPES OF DELAY

TYPES OF DELAY

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed or variable?

fixed or variable?

fixed or variable?

fixed or variable?

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed (essentially)

fixed or variable?

fixed or variable?

fixed or variable?

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed (essentially)

variable

fixed or variable?

fixed or variable?

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed (essentially)

variable

fixed (bit) variable (packet)

fixed or variable?

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed (essentially)

variable

fixed (bit) variable (packet)

fixed (metre) variable (location)

- Processing delay:
- Queueing delay:
- Transmission delay:
- Propagation delay:
- End-to-end delay:

fixed (essentially)

variable

fixed (bit) variable (packet)

fixed (metre) variable (location)

variable

SUPPOSE ...

You are sending the same sized packets to the same destination over and over again.

- Processing delay: ?
- Queueing delay: ?
- Transmission delay: ?
- Propagation delay: ?
- End-to-end delay: ?

SUPPOSE ...

You are sending the same sized packets to the same destination over and over again.

- Processing delay: fixed
- Queueing delay: variable
- Transmission delay: fixed
- Propagation delay:
- End-to-end delay:

fixed variable

DELAY CALCULATIONS – PROPAGATION

You are designing a satellite network. The satellites are 750km from the surface of the earth. The speed of light is $3x10^8$ metres per second. Packets are 1250 bytes. What is the two-way propagation delay?

DELAY CALCULATIONS – TRANSMISSION

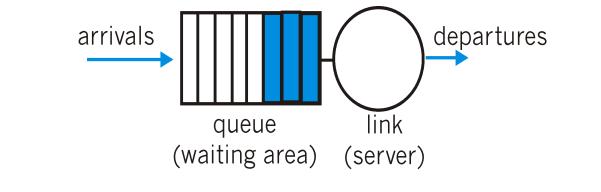
You are designing a satellite network. The satellites are 750km from the surface of the earth. The speed of light is 3x10⁸ metres per second. Packets are 1250 bytes. The network has a transfer rate of 100Mbps. What is the transmission delay (one-way)?

DELAY CALCULATIONS — END-TO-END

You are designing a satellite network. The satellites are 750km from the surface of the earth. The speed of light is 3x10⁸ metres per second. Packets are 1250 bytes. The network has a transfer rate of 100Mbps. Assume the transmission delay for the ACK is 0ms, and that the processing and queueing delays are 0. What is the total round-trip delay for one packet?

MORE CALCULATIONS – THROUGHPUT

You are designing a satellite network. The satellites are 750km from the surface of the earth. The speed of light is 3x10⁸ metres per second. Packets are 1250 bytes. The network has a transfer rate of 100Mbps. Assume that the processing and queueing delays are 0. Assume also that you can transmit packets back-to-back. **What is the throughput?**


MORE CALCULATIONS – THROUGHPUT

You are designing a satellite network. The satellites are 750km from the surface of the earth. The speed of light is $3x10^8$ metres per second. Packets are 1250 bytes. The network has a transfer rate of 100Mbps. Assume that the processing and queueing delays are 0. Assume also that you don't transmit the n+1th packet until you get a (very short) ACK for the nth packet (assume 0ms transmission delay for the ACK). What is the throughput?

TRAFFIC INTENSITY

- How much data is arriving at the router?
- How much data can a router handle?
 - At what rate can the router forward data out?
- Queueing: when a router receives data faster than it can forward it

TRAFFIC INTENSITY

Arrival Rate of 100 packets/second Packets depart every 1 millisecond

CPSC 317 Module 5

TRAFFIC INTENSITY CALCULATION

Traffic intensity is determined by

- Number of packets arriving per second (a)
- Average packet size (L) in bits
- Transmission rate: rate at which bits are disposed off per second (R)
- Traffic intensity: La/R
- Example:
 - Suppose a router is connected to a 1Mbps link. The router receives an average of 100 packets per second, averaging 500 bytes per packet. What is the traffic intensity?

CLICKER QUESTION

Suppose a router is connected to a 1Mbps link. The router receives an average of 100 packets per second, averaging 500 bytes per packet. What is the traffic intensity?

- A. 0.05
- **B**. 0.125
- **C**. 0.2
- **D**. 0.4
- E. 0.8

TRAFFIC INTENSITY RATIONALE

- Traffic intensity helps us understand how busy a link is
- Queueing delay is related to the intensity
 - Queueing delay is delay caused by waiting for the queue to clear
 - Packets arriving must wait for packets already there to leave

TRAFFIC INTENSITY VS QUEUEING DELAY

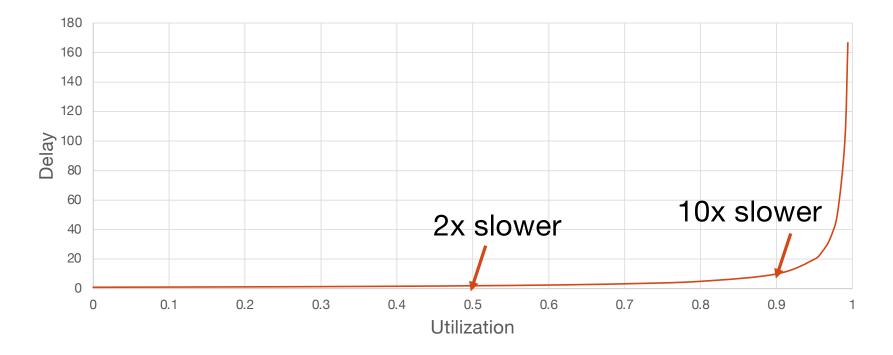
- Suppose La bits/second arrive randomly for an outgoing link in a router
- Suppose that the router can transmit *R* bits/second
- Draw a graph of queueing delay vs traffic intensity
 - What does La = R mean?
 - What does La > R mean?
 - What does La < R mean?
 - What does $La \ll R$ mean?

QUEUEING PROBLEM

- Packets are not spaced out evenly
 - Spacing between packets is not deterministic
- Packets may not be served evenly
 - Link may be busy at times
 - Particularly for shared medium (e.g., radio signals)
- Higher intensity means higher probability that there is one or more packets in the queue

TRAFFIC INTENSITY VS QUEUEING DELAY

 Assuming packets arrive at an exponential distribution, delay is given by:


$$Delay = \frac{S}{1 - U}$$

• Where:

- S is average service time when server is idle
- *U* is server utilization (usually traffic intensity)
- Queueing delay is then:

Queueing delay
$$=$$
 $\frac{S}{1-U} - S \text{ or } \frac{US}{1-U}$

DELAY VS UTILIZATION

SOME OBSERVATIONS

- Routers don't have infinite buffer space
- If packets arrive faster than they can be disposed off, they may have to be dropped
- Packets may also be corrupted in transit
 - These packets must be discarded, since their content is no longer valid
 - Even routing information (e.g., destination IP) may be corrupted

IN-CLASS ACTIVITY

• ICA22

CPSC 317 2023W2 © 2021

39