

READING

• Reading: 1.4.4

ADMINISTRATION

- PA1 has been released Due January 28th
- The date shown on PrairieLearn is 4 days later (because you all have 96 hours of automatic extension)
- If you submit after 23:59:59 on January 28th, you are consuming some hours of your extension quota

LEARNING GOALS

Basic Definitions

- Define the terms bandwidth, latency, round-trip-time, throughput, goodput, and jitter.
- Explain the difference between bandwidth, latency, throughput and goodput
- Perform computations with respect to bandwidth, throughput, goodput, and latency
- Calculate the protocol overheads with respect to performance (goodput vs bandwidth)
- Describe how jitter is introduced into a network

NETWORK METRICS

- Bandwidth
- Latency
- Round-trip-time
- Jitter
- Throughput
- Goodput

NETWORK METRICS: BANDWIDTH

- Bandwidth: maximum rate at which data can be sent over a link
 - When you see an advertised rate, it is almost always bandwidth
 - 1 Gbps ethernet
 - 500 Mbps or 1 Gbps "speed" from Shaw
 - 2,500 Mbps "speed" from Telus

DIGRESSION: UNITS OF MEASUREMENT

- Data sizes: KB, MB, GB, TB (in bytes)
 - K, M, G, T are multiples of 2 (2¹⁰, 2²⁰, 2³⁰, 2⁴⁰)
 - Except for disk drive manufacturers
- Rates: Kbps, Mbps, Gbps, Tbps
 - K, M, G, T are multiples of 10 (10³, 10⁶, 10⁹, 10¹²)
 - If KB/s, MB/s, GB/s, TB/s, then use multiples of 2 (2¹⁰, 2²⁰, 2³⁰, 2⁴⁰)

Read the units carefully

DATA SIZE VS DATA RATE

Discrepancy grows with size

- 10³ vs 2¹⁰ off by 2.4%
- 10⁶ vs 2²⁰ off by 4.9%
- 10⁹ vs 2³⁰ off by 7.4%
- 10¹² vs 2⁴⁰ off by 10.0%

BANDWIDTH AND STATION-WAGONS

"Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway." –Andrew Tanenbaum, 1981

Cisco <u>estimates</u> that total internet traffic currently averages 167 terabits per second. FedEx has a fleet of 654 aircraft with a <u>lift capacity of 26.5 million pounds daily</u>. A solid-state laptop drive weighs <u>about 78 grams</u> and can hold up to a terabyte.

That means FedEx is capable of transferring 150 exabytes of data per day, or 14 petabits per second—almost a hundred times the current throughput of the internet.

TOP-END LAPTOP DRIVES: 136 STORAGE: 136 TERABYTES (05T: \$130,000 (PLUS \$40 FOR THE SHOES)

MICROSD CARDS: 25,000 STORAGE: 1.6 PETABYTES RETAIL COST: \$1.2 MILLION

SUV VS FIBER

The distance of 413km from UBC-V to UBC-O can be covered at an average speed of 75km/hr in an SUV with 3.5m³ of carrying capacity. A Blu-Ray in a jewel case takes up 88.75 cm³. There is a 100 Gbit/s data connection between the two institutions. You have 260,000 GBytes of data, currently stored on Blu-Ray discs that you want to get to UBC-O and store on disk there. Each disc, on average, has 40 GBytes of data. Ignore van loading and unloading costs and reading/writing disc costs (i.e., the time costs of duplicating a Blu-ray Disc to send it).

CLICKER QUESTION

Which will get the data to Kelowna faster?

413km, 75km/hr, 100 Gbit/s network, 260000 GBytes

- A. SUV
- **B.** Network connection
- C. Insufficient data to determine

FOLLOWUP QUESTION

What is the bandwidth of the SUV? 413km, 75km/hr, 100 Gbit/s network, 260000 GBytes

ANOTHER FOLLOWUP QUESTION

What is the maximum bandwidth of the SUV?

413km, 75km/hr, 100 Gbit/s network, 4.3m³ capacity, BluRay = 88.75 cm³, 40Gbytes

I LIKE HOW WE'VE HAD THE INTERNET FOR DECADES, YET "SENDING FILES" IS SOMETHING EARLY ADOPTERS ARE STILL FIGURING OUT HOW TO DO.

CPSC 317

FILE TRANSFER

https://xkcd.com/949 (circa 2011)

ACTUALLY USED IN REAL LIFE

Amazon snow family

- Snowcone up to 22TB 4.5 lbs
 - https://aws.amazon.com/snowcone/
- Snowball up to 210TB 50 lbs
 - https://aws.amazon.com/snowball/
- Snowmobile up to 100PB 40 tons??
 - https://aws.amazon.com/snowmobile/

NETWORK METRICS: LATENCY

- Latency: delay from when something is sent until it is received
 - "Something" depends on context, but must be consistent
- Examples:
 - Packet latency: from start of sending packet until completely received
 - Bit/byte latency: from start of sending bit/byte until that bit/byte is completely received

VEHICLE ANALOGY

Latency versus bandwidth

If you are doing light web browsing and want the websites to be snappy, you want low latency. Bandwidth is only important to a certain extent. If you are downloading a large game from Steam, you want your bandwidth to be as high as possible. Latency is not really a factor in this case.

PIPE ANALOGY

NETWORK METRICS: RTT

- Round Trip Time (RTT): latency for sending something and receiving something back
 - Latency for message + latency for response + processing time
 - The RTT for a bit is not the same as the RTT for a request and a response
- Easier to compute than one-way latency (single clock)
- Reported by ping, traceroute, etc.

PING (MEASURE RTT)

Observe that not all ping times are the same

\$ ping -c 10 www.cs.ubc.ca PING www.cs.ubc.ca (142.103.6.5): 56 data bytes 64 bytes from 142.103.6.5: icmp_seq=0 ttl=59 time=2.145 ms 64 bytes from 142.103.6.5: icmp_seq=1 ttl=59 time=2.177 ms 64 bytes from 142.103.6.5: icmp_seq=2 ttl=59 time=2.333 ms 64 bytes from 142.103.6.5: icmp_seq=3 ttl=59 time=2.353 ms 64 bytes from 142.103.6.5: icmp_seq=4 ttl=59 time=8.583 ms 64 bytes from 142.103.6.5: icmp_seq=5 ttl=59 time=8.583 ms 64 bytes from 142.103.6.5: icmp_seq=5 ttl=59 time=8.446 ms 64 bytes from 142.103.6.5: icmp_seq=6 ttl=59 time=8.446 ms 64 bytes from 142.103.6.5: icmp_seq=6 ttl=59 time=8.452 ms 64 bytes from 142.103.6.5: icmp_seq=8 ttl=59 time=2.229 ms 64 bytes from 142.103.6.5: icmp_seq=9 ttl=59 time=2.221 ms

--- www.cs.ubc.ca ping statistics ---10 packets transmitted, 10 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 2.145/4.751/8.583/3.073 ms

NETWORK METRICS: JITTER

Jitter: variation in latency and/or RTT

WHAT CAUSES JITTER?

- Different paths for packets
- Network congestion
- Not implementing packet prioritization
- Poor hardware performance (old equipment)
- Wireless jitter (interference in medium)

NETWORK METRICS: THROUGHPUT

- Throughput: amount of data moved from one location to another in a given time
- Usually expressed in bytes per second (B/s, MB/s, etc.) or bits per second (bps, Mbps, etc.)

NETWORK METRICS: GOODPUT

Goodput: rate at which useful data arrives

- Does not include headers and encoding costs
- Does not include data loss and retransmissions
- May depend on context and application-layer protocol

GOODPUT VS THROUGHPUT

IN-CLASS ACTIVITY

