CPSC 317 COMPUTER NETWORKING

Module 1: Design of the Internet

ADMINISTRIVIA

- Clicker questions today
- Tutorials starting today

READING

-Reading: Chapter 1 Intro, 1.1, 1.2, 1.3, 1.5, 1.7

CPSC 317 2023W2 © 2021

3

LEARNING GOALS

- A. Explain what the Internet is, and how (generally) it is put together
- B. Describe the advantages and disadvantages of packet vs circuit switching
- C. Define the term protocol in the context of a computer network
- D. Explain why protocols are modeled using finite state machines and what states, actions, and events are
- E. List the layers of the Internet protocol stack, in their proper order, and what functions each layer performs
- F. Explain encapsulation and the structure of packets flowing in the Internet

CPSC 317 - Module 1

WHAT IS THE INTERNET?

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a network of networks that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the interlinked hypertext documents and applications of the World Wide Web, electronic mail, telephony, and file sharing.

Wikipedia 2024

Network of Networks

CPSC 317 - Module 1

HISTORY OF THE INTERNET (AMERICAN)

CPSC 317 - Module 1

THE INTERNET: "NUTS AND BOLTS" VIEW

Dillions of connected computing devices: hosts, end-systems

□PCs workstations, servers

□smartphones, toasters, IoT

□running *network apps*

Communication links

□fiber, copper, radio, satellite □varying *bandwidth/latency*

routers: forward packets (chunks of data)

□regional, local, company networks

CPSC 317 - Module 1

11

INTERNET GOALS

- Main goal: integrating a number of separately administrated entities into a common entity
- Secondary goals:
 - Must continue despite loss of the network or gateway
 - Must support multiple types of services (applications)
 - Must support multiple types of networks
 - Distributed management of resources
 - Cost effective
 - Easy host attachment
 - Resources must be accountable

COMMUNICATION

Necessary conditions:

- a communication medium: modulation of some medium (e.g., air)
- source(s) and destination(s)
- protocol: shared information (language)
- message: information sent from source to destination on a medium using a protocol

LARGE SCALE "COMMUNICATION" SYSTEMS

- Telephone / Telegraph
- Mail
- Package delivery (Canada Post, DHL, Amazon)

AN ANALOGY: MAIL DELIVERY

• What makes up a postal address?

What needs to be listed in the envelope?

ANOTHER ANALOGY: PHONE SYSTEM

What makes up a phone system address?

HOW DOES THIS TRANSLATE TO THE INTERNET?

What makes up an Internet Address?

CLICKER QUESTION

How do you think IP addresses are organized? Or in other words, how are A.x.y.z and A.u.v.w or (A.B.C.x and A.B.C.y) close together? [A,B,C: constants; u,v,w,x,y,z: variables]

- A. Geographically
- B. By organization (company, university, government, etc.)
- C. By Fully-Qualified Domain Name (thetis.cs.ubc.ca, <u>www.amazon.com</u>, etc.)
- D. There is no organization, it is essentially random

THE CONNECTION MEDIUM IS SHARED

https://www.sciencedirect.com/topics/computer-science/statistical-multiplexing CPSC 317 2023W2 © 2021

MULTIPLEXING

Data flows need to be "multiplexed"

- Multiple input streams must share the medium
- It must be possible to "demultiplex" at the destination

HOW IS DATA SENT (OPTION 1)?

- Circuit switching
 - Dedicated path between source and destination
 - The path the data will take is determined when the connection is established
 - Single stream of information per path

Multiple multiplexing options

- Time division multiplexing (time quotas)
- Frequency division multiplexing (different frequencies)
- Code division multiplexing (different representations of data)
- Orthogonal multiplexing (combination of techniques)

CIRCUIT SWITCHING

By The U.S. National Archives - Photograph of Women Working at a Bell System Telephone Switchboard This media is available in the holdings of the National Archives and Records Administration, cataloged under the ARC Identifier (National Archives Identifier)

CIRCUIT SWITCHING

- The more "obvious" option
 - Historically we needed a "wire" running from source phone to destination phone
 - Models how humans communicate (we talk to one person at a time)
- Works well when
 - Guaranteed service is valuable (guarantee is provided assuming no un-anticipated or catastrophic failures happen)
 - Demand is steady (unchanging rate)
 - Starting a new conversation is rare

HOW IS DATA SENT (OPTION 2)?

Packet switching

- Data is divided in packets (small chunks of data) that are sent individually
- Each packet is self-contained
 - Contains source and destination address as well as data
 - Independently routed from source to destination
- Medium is occupied only during the transmission of the packet
- Statistical multiplexing

STATISTICAL MULTIPLEXING

https://www.sciencedirect.com/topics/computer-science/statistical-multiplexing CPSC 317 2023W2 © 2021

PACKET SWITCHING

A much less "obvious" option

- Initially, many people thought it wouldn't work at all
- Imagine if each word you speak had to be addressed to the person who you intend to hear it!
- Works well when
 - Statistically good performance is good enough
 - Demand is bursty (rapidly changing rate)
 - Starting a new conversation is frequent
- Overall, allows more conversations and better utilization of the medium

CLICKER QUESTION

Which of the following **DOES NOT** need to be included in a self-contained Internet packet?

- A. Its source address
- B. Its destination address
- C. The route it needs to take to get to the destination
- D. An indication of ordering (for data with multiple parts)
- E. All of the above need to be included

SUMMARY

- The Internet is a network of networks
- Its design goals include: reliability, flexibility, decentralized management, cost effectiveness, accountability
- Circuit switching vs packet switching

IN-CLASS ACTIVITY

- Form yourselves into groups (1 9 students per group)
- You should be able to chat conveniently in your group
- Go to PrairieLearn
- Click on Assessments
- Start the ICA11 assessment (Circuit vs Packet Switching)
- Talk in your group about the answers
 - Hearing other students ideas
 - Explaining your ideas to others