

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Viewing 2

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2016

2

Projections I

3

Pinhole Camera

•  ingredients
•  box, film, hole punch

•  result
•  picture

www.kodak.com

www.pinhole.org

www.debevec.org/Pinhole

4

Pinhole Camera

•  theoretical perfect pinhole
•  light shining through tiny hole into dark space

yields upside-down picture

film plane

perfect
pinhole

one ray
of projection

5

Pinhole Camera

•  non-zero sized hole
•  blur: rays hit multiple points on film plane

film plane

actual
pinhole

multiple rays
of projection

6

Real Cameras
•  pinhole camera has small aperture (lens

opening)
•  minimize blur

•  problem: hard to get enough light to expose
the film

•  solution: lens
•  permits larger apertures
•  permits changing distance to film plane

without actually moving it
•  cost: limited depth of field where image is

in focus

aperture

lens
depth

of
field

http://en.wikipedia.org/wiki/Image:DOF-ShallowDepthofField.jpg

7

Graphics Cameras

•  real pinhole camera: image inverted

image
plane

eye
 point

n  computer graphics camera: convenient equivalent

image
plane

eye
 point

center of
projection

8

General Projection

•  image plane need not be perpendicular to
 view plane

image
plane

eye
 point

image
plane

eye
 point

9

Perspective Projection

•  our camera must model perspective

10

Perspective Projection

•  our camera must model perspective

11

Projective Transformations

•  planar geometric projections
•  planar: onto a plane
•  geometric: using straight lines
•  projections: 3D -> 2D

•  aka projective mappings

•  counterexamples?

12

Projective Transformations
•  properties
•  lines mapped to lines and triangles to triangles
•  parallel lines do NOT remain parallel

•  e.g. rails vanishing at infinity

•  affine combinations are NOT preserved
•  e.g. center of a line does not map to center of

projected line (perspective foreshortening)

13

Perspective Projection

•  project all geometry
•  through common center of projection (eye point)
•  onto an image plane

x z x z

y

x

-z

14

Perspective Projection

how tall should
this bunny be?

projection
plane

center of projection
(eye point)

15

Basic Perspective Projection

similar triangles

z

P(x,y,z)

P(x’,y’,z’)

z’=d

y

•  nonuniform foreshortening
•  not affine

but

€

z'= d

16

Perspective Projection
•  desired result for a point [x, y, z, 1]T projected

onto the view plane:

•  what could a matrix look like to do this?

dz
dz

y

z

dy
y

dz

x

z

dx
x

z

y

d

y

z

x

d

x

==
⋅

==
⋅

=

==

',','

'
,

'

17

Simple Perspective Projection Matrix

























d

dz

y

dz

x

/

/

18

Simple Perspective Projection Matrix

























d

dz

y

dz

x

/

/ is homogenized version of

where w = z/d



















dz

z

y

x

/

19

Simple Perspective Projection Matrix





































=



















10100

0100

0010

0001

/

z

y

x

ddz

z

y

x
























d

dz

y

dz

x

/

/ is homogenized version of

where w = z/d



















dz

z

y

x

/

20

Perspective Projection

•  expressible with 4x4 homogeneous matrix
•  use previously untouched bottom row

•  perspective projection is irreversible
•  many 3D points can be mapped to same

 (x, y, d) on the projection plane
•  no way to retrieve the unique z values

21

Moving COP to Infinity

•  as COP moves away, lines approach parallel
•  when COP at infinity, orthographic view

22

Orthographic Camera Projection
•  camera’s back plane

parallel to lens
•  infinite focal length
•  no perspective

convergence

•  just throw away z values

















=

















0

y

x

z

y

x

p

p

p





































=



















11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

23

Perspective to Orthographic
•  transformation of space
•  center of projection moves to infinity
•  view volume transformed

•  from frustum (truncated pyramid) to
parallelepiped (box)

-z

x

-z

x

Frustum Parallelepiped

24

View Volumes
•  specifies field-of-view, used for clipping
•  restricts domain of z stored for visibility test

z

perspective view volume orthographic view volume

x=left

x=right

y=top

y=bottom z=-near z=-far x
VCS x

z

VCS

y
y

x=left
y=top

x=right

z=-far
z=-near y=bottom

25

Asymmetric Frusta

•  our formulation allows asymmetry
•  why bother?

-z

x

Frustum
right

left
-z

x

Frustum

z=-n z=-f

right

left

26

Asymmetric Frusta

•  our formulation allows asymmetry
•  why bother? binocular stereo

•  view vector not perpendicular to view plane

Right Eye

Left Eye

27

Simpler Formulation

•  left, right, bottom, top, near, far
•  nonintuitive
•  often overkill

•  look through window center
•  symmetric frustum

•  constraints
•  left = -right, bottom = -top

28

Field-of-View Formulation

•  FOV in one direction + aspect ratio (w/h)
•  determines FOV in other direction
•  also set near, far (reasonably intuitive)

-z

x

Frustum

z=-n z=-f

α
fovx/2

fovy/2
h

w

THREE.PerspectiveCamera
(fovy,aspect,near,far);

29

Demos

•  frustum
•  http://webglfundamentals.org/webgl/frustum-diagram.html
•  http://www.ugrad.cs.ubc.ca/~cs314/Vsep2014/webGL/view-

frustum.html

•  orthographic vs projection cameras
•  http://threejs.org/examples/#canvas_camera_orthographic2
•  http://threejs.org/examples/#webgl_camera
•  https://www.script-tutorials.com/webgl-with-three-js-lesson-9/

