

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016

Tamara Munzner

Transformations

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Readings for Transformations 1-5

- Shirley/Marschner
 - Ch 6: Transformation Matrices
 - except 6.1.6, 6.3.1
 - Sect 12.2 Scene Graphs
- Gortler
 - Ch 2: Linear, Sec 2.5-2.6
 - Ch 3: Affine
 - Ch 4: Respect
 - Ch 5: Frames in Graphics, 5.3-5.4

2D Transformations

Transformations

transforming an object = transforming all its points

transforming a polygon = transforming its vertices

Matrix Representation

- represent 2D transformation with matrix
 - multiply matrix by column vector apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & e \\ f & g \end{bmatrix} \begin{bmatrix} h & i \\ j & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 matrices are efficient, convenient way to represent sequence of transformations!

Scaling

- scaling a coordinate means multiplying each of its components by a scalar
- uniform scaling means this scalar is the same for all components:

Scaling

 non-uniform scaling: different scalars per component:

how can we represent this in matrix form?

Scaling

• scaling operation: $\begin{vmatrix} x' \\ v' \end{vmatrix} = \begin{vmatrix} ax \\ by \end{vmatrix}$

• or, in matrix form:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

2D Rotation

2D Rotation From Trig Identities


```
x = r \cos (\phi)
 y = r \sin(\phi)
x' = r \cos (\phi + \theta)y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
 y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = A - B$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = A - B$$
$$A = x \cos \theta$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = A - B$$

$$A = x \cos \theta$$

$$B = y \sin \theta$$

2D Rotation Matrix

easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- even though sin(q) and cos(q) are nonlinear functions of q,
 - · x' is a linear combination of x and y
 - y' is a linear combination of x and y

Shear

- shear along x axis
 - push points to right in proportion to height

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} ? \\ ? \end{bmatrix}$$

Shear

- shear along x axis
 - push points to right in proportion to height

Reflection

reflect across x axis

Reflection

reflect across x axis

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x + a \\ y + b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x + a \\ y + b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x + a \\ y + b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x + a \\ y + b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Linear Transformations

- linear transformations are combinations of
 - shear
 - scale
 - rotate
 - reflect

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$

$$x' = ax + by$$
$$y' = cx + dy$$

- properties of linear transformations
 - satisfies T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Challenge

- matrix multiplication
 - for everything except translation
 - can we just do everything with multiplication?
 - then could just do composition, no special cases