# CPSC 314 TEXTURE MAPPING

## UGRAD.CS.UBC.CA/~cs314

Glen Berseth (Based of Mikhail Bessmeltsev and Dinesh Pai)

## WHY IS TEXTURE IMPORTANT?



#### TEXTURE MAPPING

- real life objects have nonuniform colors, normals
- to generate realistic objects, reproduce coloring &normal variations = texture
- can often replace complex geometric details





#### TEXTURE MAPPING

- hide geometric simplicity
  - images convey illusion of geometry
  - map a brick wall texture on a flat polygon
  - create bumpy effect on surface
- usually: associate 2D information with a surface in 3D
  - point on surface ↔ point in texture
  - "paint" image onto polygon

#### COLOR TEXTURE MAPPING

- define color (RGB) for each point on object surface
- other:
  - volumetric texture
  - procedural texture







## TEXTURE MAPPING



## TEXTURE MAPPING - Questions?

## SURFACE TEXTURE

- Define texture pattern over (u,v) domain (Image)
  - Image 2D array of "texels"
- Assign (u,v) coordinates to each point on object surface
  - How: depends on surface type
- For polygons (triangle)
  - Inside use barycentric coordinates
  - For vertices need mapping function (artist/programmer)



## TEXTURE MAPPING EXAMPLE



## TEXTURE MAPPING EXAMPLE





#### TEXTURE MAPPING EXAMPLE

Pause .... --> Math Example

#### THREE.JS

• pass texture as a uniform:

```
var uniforms = {
    texture1: { type: "t", value: THREE.ImageUtils.loadTexture( "texture.jpg" ) }};
var material = new THREE.ShaderMaterial( { uniforms, ...});
• uv will be passed on to the vertex shader (no need to write this):
attribute vec2 uv;
• use it, e.g., in Fragment Shader:
uniform sampler2D texture1;
varying vec2 texCoord;
vec4 texColor = texture2D(texture1, texCoord);
```

#### HOW TO USE COLOR TEXTURES

- Replace
  - Set fragment color to texture color

```
gl_FragColor = texColor;
```

- Modulate
  - Use texture color as reflection color in illumination equation

```
kd = texColor; ka = texColor;
gl_FragColor = ka*ia + kd*id*dotProduct + ...;
```

## TEXTURE LOOKUP: TILING AND CLAMPING

- What if s or t is outside [0...1]?
- Multiple choices
  - Use fractional part of texture coordinates
    - Cyclic repetition (*repeat*)
  - Clamp every component to range [0...1]
    - Re-use color values from texture image border





#### IN THREE.JS

```
var texture = THREE.ImageUtils.loadTexture(
"textures/water.jpg" );

texture.wrapS = THREE.RepeatWrapping;

texture.wrapT = THREE.ClampToEdgeWrapping;

texture.repeat.set( 4, 4 );
```

#### TILED TEXTURE MAP





#### RECONSTRUCTION





#### MIPMAPPING

use "image pyramid" to precompute averaged versions of the texture



store whole pyramid in single block of memory





Without MIP-mapping



With MIP-mapping

#### **MIPMAPS**

- multum in parvo -- many things in a small place
  - prespecify a series of prefiltered texture maps of decreasing resolutions
  - requires more texture storage
  - avoid shimmering and flashing as objects move
- texture.generateMipmaps = true
  - automatically constructs a family of textures from original texturesize down to 1x1
- texture.mipmaps[...]





#### MIPMAP STORAGE

• only 1/3 more space required



## HOW TO INTERPOLATE S,T?

#### TEXTURE MAPPING

Texture coordinate interpolation

- Perspective foreshortening problem
- Also problematic for color interpolation, etc.





#### OTHER USES FOR TEXTURES

#### OTHER USES FOR TEXTURES

- usually provides colour, but ...
- can also use to control other material/object properties
  - surface normal (bump mapping)
  - reflected color (environment mapping)



#### BUMP MAPPING: NORMALS AS TEXTURE

- object surface often not smooth to recreate correctly need complex geometry model
- can control shape "effect" by locally perturbing surface normal
  - random perturbation
  - directional change over region



## **BUMP MAPPING**





## **BUMP MAPPING**



## **EMBOSSING**

- at transitions
  - rotate point's surface normal by  $\vartheta$  or  $\vartheta$







#### DISPLACEMENT MAPPING

- bump mapping gets silhouettes wrong
  - shadows wrong too
- change surface geometry instead
  - only recently available with realtime graphics
  - need to subdivide surface



**ORIGINAL MESH** 



DISPLACEMENT MAP



MESH WITH DISPLACEMENT

https://en.wikipedia.org/wiki/Displacement\_map ping#/media/File:Displacement.jpg

#### ENVIRONMENT MAPPING

- cheap way to achieve reflective effect
  - generate image of surrounding
  - map to object as texture



#### ENVIRONMENT MAPPING

- used to model object that reflects surrounding textures to the eye
  - movie example: cyborg in Terminator 2
- different approaches
  - sphere, cube most popular
  - others possible too

#### SPHERE MAPPING

- texture is distorted fish-eye view
  - point camera at mirrored sphere
  - spherical texture mapping creates texture coordinates that correctly index into this texture map





- 6 planar textures, sides of cube
  - point camera in 6 different directions, facing out from origin







- direction of reflection vector *r* selects the face of the cube to be indexed
  - co-ordinate with largest magnitude
    - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
  - remaining two coordinates select the pixel from the face.
- difficulty in interpolating across faces

how to

calculate?

- direction of reflection vector *r* selects the face of the cube to be indexed
  - co-ordinate with largest magnitude
    - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
  - remaining two coordinates select the pixel from the face.
- difficulty in interpolating across faces

## ENVIRONMENT MAPS (EM)

- in theory, every object should have a separate EM
- in theory, every time something moves, you should re-compute EM
- "you'll be surprised at what you can get away with"

#### **VOLUMETRIC TEXTURE**

- define texture pattern over 3D domain 3D space containing the object
- texture function can be digitized or procedural
- for each point on object compute texture from point location in space
- e.g., ShaderToy
- computing is cheap,
   memory access is expensive!





## PROCEDURAL TEXTURE EFFECTS: BOMBING

- randomly drop bombs of various shapes, sizes and orientation into texture space (store data in table)
  - for point P search table and determine if inside shape
    - if so, color by shape's color
    - otherwise, color by object's color





## PERLIN NOISE: PROCEDURAL TEXTURES

- several good explanations
  - <a href="http://www.noisemachine.com/talk1">http://www.noisemachine.com/talk1</a>
  - <a href="http://freespace.virgin.net/hugo.elias/models/m\_perlin.htm">http://freespace.virgin.net/hugo.elias/models/m\_perlin.htm</a>
  - <a href="http://www.robo-murito.net/code/perlin-noise-math-faq.html">http://www.robo-murito.net/code/perlin-noise-math-faq.html</a>







http://mrl.nyu.edu/~perlin/planet/

#### PERLIN NOISE: TURBULENCE

- multiple feature sizes
  - add scaled copies of noise











#### PERLIN NOISE: TURBULENCE

- multiple feature sizes
  - add scaled copies of noise





## THE RENDERING PIPELINE

