

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination — Slow
Ignore real physics, approximate the look Physically based

Interaction of each object with light
- Compute on surface (light to viewer)

Interactions between objects

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow

Ignore real physics, approximate the look Physically based
Interactions between objects

Interaction of each object with light
- Compute on surface (light to viewer)

Vertices Vertex Shader

Vertex Post-Processing

and attributes [e e _| Viewport transform >
Per-vertex at m ‘
= —— .) " ”
p—— . /!
oo ffiion | e
-, | - Ly |)
Scanconversion >

Interpolation

Shading

> Per-Sample Operatic
Depth test

Blending

—» Framebuffer

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination - Slow

Ignore real physics, approximate the look Physically based
Interactions between objects

Interaction of each object with light
- Compute on surface (light to viewer)

Vertices Vertex Shader
and attributes

—>

Modelview transform

Scansconversion

Interpolation

> Per-Sample Operatic
Depth test

Blending

—» Framebuffer

WHAT WAS NON-PHYSICAL IN
LOCAL ILLUMINATION?

Vertices
and attributes

—>

Vertex Shader

Modelview transform

Per-vertex attributes

Rasterization

Interpolation

Per-Sample‘Operations
Depth test

Blending

).

Scan conversion)

Vertex Post-Processing
Viewport transform

Clipping

Fragment Shader

Texturing/...

Lighting/shading

—» Framebuffer

HOW SHOULD GLOBAL ILLUMINATION WORK?

HOW SHOULD GLOBAL ILLUMINATION WORK?

Simulate light Light
 Asitis emitted from light Eye P\ Image Plane Source
SOurces @

« As it bounces off objects / get Reflected
absorbed / refracted

 As some of the rays hit the
camera

Refracted
Ray

PROBLEM?

RAY TRACING: IDEA

Light
Source
o

|\\

Eye P\

Image Plane

Reflected

Refracted
Ray

RAY TRACING: IDEA

Eye P\ Image Plane Source
A,".'...
&L e
N
"‘Q‘gl N

Shadow
Reflected Rays
Ray
(/

- @

Ray

RAY TRACING

» Invert the direction of rays!
» Shoot rays from CAMERA through each pixel

 “Trace the rays back”

- Simulate whatever the light rays do:
» Reflection
» Refraction

 Each interaction of the ray with an object adds to the final color

 Those rays are never gonna hit the light source, so
 Shoot “shadow rays” to compute direct illumination

REFLECTION

 Mirror effects
» Perfect specular reflection

Snell's Law
c,sing, =c,sind,

eer 'transparent
T hndmg medium

- .

.'-"..;v,~

]

o

. 2 l () A~
sfractive

HENRIK WANN JENSEN 2000

BASIC RAY-TRACING ALGORITHM

RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {
if (Reflect(obj))
reflect color = RayTrace(ReflectRay(r,obj));
else
reflect color = Black;

if (Transparent(obj))

refract_color = RayTrace(RefractRay(r,obj));
else

refract_color = Black;

return Shade(reflect color, refract color, obj);

WHEN TO STOP?

» Algorithm above does not terminate

 Termination Criteria
 No intersection

- Contribution of secondary ray attenuated below threshold - each
reflection /refraction attenuates ray

- Maximal depth is reached

SUB-ROUTINES

» ReflectRay(r,0bj) - computes reflected ray (use obj normal at
intersection)

» RefractRay(r,obj) - computes refracted ray
 Note: ray is inside obj

 Shade(reflect_color,refract_color,obj) - compute
illumination given three components

SIMULATING SHADOWS

» Trace ray from each ray-object intersection point to light
sources

- If the ray intersects an object in between = point is shadowed from
the light source

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

RAY TRACING: IDEA

Eye P\ Image Plane Source
A,".'...
&L e
N
"‘Q‘gl N

Shadow
Reflected Rays
Ray
(/

- @

Ray

RAY-TRACING: PRACTICALITIES

 Generation of rays

» Intersection of rays with geometric primitives
« Geometric transformations

» Lighting and shading

 Speed: Reducing number of intersection tests
 E.g. use BSP trees or other types of space partitioning

RAY-TRACING: GENERATION OF RAYS

« Camera Coordinate System v
» Origin: C (camera position) [
« Viewing direction: w
* Up vector: v
* u direction: u= wxv

. c &
» Corresponds to viewing .
transformation in rendering pipeline!

RAY-TRACING: GENERATION OF RAYS

» Distance to image plane: d p V
» Image resolution (in pixels): Ny, N,,
 Image plane dimensions: I, , t, b

+ Pixel at position i, j (i =0,..,N, —1;j = 0,..,N, —1)|/
C ;

O=C+dw+lu+tv

b
P;,j=0+ (i+0.5) - -u—(+0.5): Y
y

=0+ ({+05) -Au-u—(G+05)-Av-v

RAY-TRACING: GENERATION OF RAYS

 Parametric equation of a ray:
R;t)=C+1t-(R,-C)=C+t-v,;

where t=0...c

RAY-TRACING: PRACTICALITIES

 Generation of rays

* Intersection of rays with geometric primitives
« Geometric transformations

» Lighting and shading

 Speed: Reducing number of intersection tests
 E.g. use BSP trees or other types of space partitioning

RAY-OBJECT INTERSECTIONS

* In OpenGL pipeline, we were limited to discrete objects:
 Triangle meshes

» In ray tracing, we can support analytic surfaces!

 No problem with interpolating z and normals, # of triangles, etc.
« Almost

RAY-OBJECT INTERSECTIONS

» Core of ray-tracing = must be extremely efficient

» Usually involves solving a set of equations
» Using implicit formulas for primitives

Example: Ray-Sphere intersection

ray: X() = p, +V,t, y()=p, +V,t, () =p, +V,t v
(unit) sphere: x* +y* +z° =1 /
quadratic equation in t : P
0= (pX +th)2 +(py _|_Vyt)2 +(pz +Vzt)2 -1

=t (vy +V, +V;) +2t(pV, + PV, +p,V,)

+H(p +p, +p,)-1

RAY INTERSECTIONS WITH OTHER PRIMITIVES

» Implicit functions:

 Spheres at arbitrary positions
« Same thing
» Conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)
- Same thing (all are quadratic functions!)
 Higher order functions (e.g. tori and other quartic functions)
» In principle the same
« But root-finding difficult
« Numerical methods

RAY INTERSECTIONS WITH OTHER PRIMITIVES

» Polygons:

» First intersect ray with plane
* linear implicit function

« Then test whether point is inside or outside of polygon (2D test)

 For convex polygons
« Suffices to test whether point in on the right side of every boundary edge

RAY-TRACING: PRACTICALITIES

 Generation of rays

» Intersection of rays with geometric primitives
» Geometric transformations

» Lighting and shading

 Speed: Reducing number of intersection tests
 E.g. use BSP trees or other types of space partitioning

RAY-TRACING:
TRANSFORMATIONS

 Note: rays replace perspective transtformation

e Geometric Transformations:

- Similar goal as in rendering pipeline:

« Modeling scenes convenient using different coordinate systems for individual
objects

* Problem:

 Not all object representations are easy to transform

 This problem is fixed in rendering pipeline by restriction to polygons (affine
invariance!)

RAY-TRACING:
TRANSFORMATIONS

» Ray Transformation:

» For intersection test, it is only important that ray is in same
coordinate system as object representation
 Transform all rays into object coordinates

 Transform camera point and ray direction by inverse of model /view
matrix

- Shading has to be done in world coordinates (where light
sources are given)
 Transform object space intersection point to world coordinates
 Thus have to keep both world and object-space ray

RAY-TRACING: PRACTICALITIES

 Generation of rays

» Intersection of rays with geometric primitives
« Geometric transformations

- Lighting and shading

 Speed: Reducing number of intersection tests
 E.g. use BSP trees or other types of space partitioning

RAY-TRACING: DIRECT ILLUMINATION

» Light sources:
« For the moment: point and directional lights

» More complex lights are possible
* Area lights
» Fluorescence

RAY-TRACING: DIRECT ILLUMINATION

» Local surface information (normal...)
 For implicit surfaces F(x,y,z)=0:
normal n(x,y,z) is gradient of F:

0F (x,y,z)/0x
n(x,y,z) =VF(x,y,z) =| 0F(x,y,z)/0y
0F (x,y,z)/0z

- Example:
F(X,V,2)=X"+y°+2°—r°
/2x\

n(x,y,z)=| 2y
\2Z,

Needs to be normalized!

RAY-TRACING: DIRECT ILLUMINATION

» For triangle meshes
» Interpolate per-vertex information as in rendering pipeline
« Phong shading!
 Same as discussed for rendering pipeline

» Difference to rendering pipeline:

- Have to compute Barycentric coordinates for every intersection point (e.g
plane equation for triangles)

RAY-TRACING: PRACTICALITIES

 Generation of rays

» Intersection of rays with geometric primitives
« Geometric transformations

- Lighting and shading

» Speed: Reducing number of intersection tests

OPTIMIZED RAY-TRACING

« Basic algorithm is simple but VERY expensive
* Optimize...
« Reduce number of rays traced
« Reduce number of ray-object intersection calculations

« Parallelize

e Cluster
« GPU

« Methods

- Bounding Boxes
« Spatial Subdivision

» Visibility, Intersection /Collision
* Tree Pruning

SPATIAL SUBDIVISION DATA STRUCTURES

 Goal: reduce number of intersection tests per ray

* Lots of different approaches:
* (Hierarchical) bounding volumes

 Hierarchical space subdivision
* Octree, k-D tree, BSP tree

BOUNDING VOLUMES: IDEA

« Don't test each ray against complex objects (e.g. triangle mesh)
Do a quick conservative test first which eliminates most rays

 Surround complex object by simple, easy to test geometry (e.g. sphere
or axis-aligned box)

 Reduce false positives: make bounding volume as tight as possible!

HIERARCHICAL BOUNDING
VOLUMES

 Extension of previous idea:
 Use bounding volumes for groups of objects

O QO
_ - _
OO'OO O 0 O
O o ol 40
®
- |l O O

SPATIAL SUBDIVISION DATA STRUCTURES

« Bounding Volumes:

- Find simple object completely enclosing complicated objects
« Boxes, spheres

* Hierarchically combine into larger bounding volumes

» Spatial subdivision data structure:

» Partition the whole space into cells
» Grids, octrees, (BSP trees)

- Simplifies and accelerates traversal
 Performance less dependent on order in which objects are inserted

SOFT SHADOWS: AREA LIGHT SOURCES

e So far:

- All lights were either point-shaped or directional
 Both for ray-tracing and the rendering pipeline

 Thus, at every point, we only need to compute lighting formula
and shadowing for ONE direction per light

* In reality:

- All lights have a finite area

» Instead of just dealing with one direction, we now have to
integrate over all directions that go to the light source

AREA LIGHT SOURCES

» Area lights produce soft shadows:
* In 2D: — 7 Area light

Occluding surface

Receiving surface \

Umbra Penumbra
(core shadow) (partial shadow)

AREA LIGHT SOURCES

» Point lights:
 Only one light direction:

9Pomt light

]reﬂected — p V)]light
» V is visibility of light (0 or 1)
* p is lighting

model (e.g.
diffuse or Phong)

AREA LIGHT SOURCES

» Area Lights:
« Infinitely many light rays Area light
 Need to integrate
over all of them: / \ /
]reﬂected — J p(a))) V(a))) Ilight(a))) da)
light

directions
» Lighting model
visibility and
light intensity
can now be different
for every ray!

INTEGRATING OVER LIGHT SOURCE

» Rewrite the integration
- Instead of integrating over directions
Ireﬂected — J p(a))) V(CC)) .]light(a)) . da)

light
directions

integrate over points on the light source
| reotea (1) = j P(P—0)-V(p—0)lg(p)-ds-dt

* (point on reflecting surface
* p= F(s,t) point on the area light
- We are integrating over p

INTEGRATION

BProblem:
BExcept for basic case not solvable analytically’
B Largely due to the visibility term
HSo:

BUse numerical integration = approximate light with lots of point
lights

NUMERICAL INTEGRATION

» Regular grid of point lights Y A

» Problem: Too regular °/ e
see 4 hard shadows

* Need LOTS of points
to avoid this problem

» Solution: Monte-Carlo!

GLOBAL ILLUMINATION ALGORITHMS

* Ray Tracing

» Path Tracing

* Photon Mapping

» Radiosity

» Metropolis light transport

