
CPSC 314
21 – GLOBAL ILLUMINATION

UGRAD.CS.UBC.CA/~CS314

Mikhail Bessmeltsev

Textbook: 20

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

Local illumination - Fast
Ignore real physics, approximate the look
Interaction of each object with light

• Compute on surface (light to viewer)

ILLUMINATION MODELS/ALGORITHMS

Global illumination – Slow
Physically based

Interactions between objects

How?

WHAT WAS NON-PHYSICAL IN
LOCAL ILLUMINATION?

HOW SHOULD GLOBAL ILLUMINATION WORK? HOW SHOULD GLOBAL ILLUMINATION WORK?

Simulate light
• As it is emitted from light

sources

• As it bounces off objects / get
absorbed / refracted

• As some of the rays hit the
camera

Image Plane Eye

Refracted

Ray

Reflected

Ray

Light

Source

PROBLEM?

RAY TRACING: IDEA

Image Plane Eye

Refracted

Ray

Reflected

Ray

Light

Source

RAY TRACING: IDEA
Image Plane Eye

Refracted

Ray

Reflected

Ray

Light

Source

Shadow

Rays

RAY TRACING

• Invert the direction of rays!
• Shoot rays from CAMERA through each pixel

• “Trace the rays back”

• Simulate whatever the light rays do:
• Reflection
• Refraction
• …

• Each interaction of the ray with an object adds to the final color
• Those rays are never gonna hit the light source, so

• Shoot “shadow rays” to compute direct illumination

• Mirror effects
• Perfect specular reflection

REFLECTION n

 

© 2010 Jules Berman ,
http://julesberman.blogspot.ca/

• Interface between transparent
object and surrounding medium

• E.g. glass/air boundary

• Light ray breaks (changes
direction) based on refractive
indices c1, c2

REFRACTION
n

 1

 2

Snell’s Law

2112 sinsin  cc  BASIC RAY-TRACING ALGORITHM
RayTrace(r,scene)
obj = FirstIntersection(r,scene)

if (no obj) return BackgroundColor;
else {
 if (Reflect(obj))
 reflect_color = RayTrace(ReflectRay(r,obj));
 else
 reflect_color = Black;

 if (Transparent(obj))
 refract_color = RayTrace(RefractRay(r,obj));
 else
 refract_color = Black;

 return Shade(reflect_color, refract_color, obj);
}

• Algorithm above does not terminate

• Termination Criteria
• No intersection
• Contribution of secondary ray attenuated below threshold – each

reflection/refraction attenuates ray
• Maximal depth is reached

WHEN TO STOP?

• ReflectRay(r,obj) – computes reflected ray (use obj normal at
intersection)

• RefractRay(r,obj) - computes refracted ray
• Note: ray is inside obj

• Shade(reflect_color,refract_color,obj) – compute

illumination given three components

SUB-ROUTINES

• Trace ray from each ray-object intersection point to light
sources

• If the ray intersects an object in between  point is shadowed from
the light source

SIMULATING SHADOWS

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

RAY TRACING: IDEA
Image Plane Eye

Refracted

Ray

Reflected

Ray

Light

Source

Shadow

Rays

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

• Camera Coordinate System
• Origin: C (camera position)
• Viewing direction: w

• Up vector: v

• u direction: u= wv

• Corresponds to viewing
transformation in rendering pipeline!

RAY-TRACING: GENERATION OF RAYS

v

w

x
C

• Distance to image plane: d

• Image resolution (in pixels):
• Image plane dimensions: l, r, t, b

• Pixel at position i, j (𝑖 = 0,… ,𝑁𝑥 − 1; 𝑗 = 0,… ,𝑁𝑦 − 1)

RAY-TRACING: GENERATION OF RAYS
v

w

u
C

𝑃𝑖 ,𝑗 = 𝑂 + 𝑖 + 0.5 ⋅
𝑟 − 𝑙

𝑁𝑥
⋅ 𝑢 − 𝑗 + 0.5 ⋅

𝑡 − 𝑏

𝑁𝑦
⋅ 𝑣

𝑁𝑥 , 𝑁𝑦

= 𝑂 + 𝑖 + 0.5 ⋅ Δ𝑢 ⋅ 𝑢 − 𝑗 + 0.5 ⋅ Δ𝑣 ⋅ 𝑣

𝑶 = 𝑪 + 𝑑𝒘 + 𝑙𝒖 + 𝑡𝒗

• Parametric equation of a ray:

where t= 0…

RAY-TRACING: GENERATION OF RAYS

jijiji tCCPtCt ,,,)()(R v

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES RAY-OBJECT INTERSECTIONS

• In OpenGL pipeline, we were limited to discrete objects:
• Triangle meshes

• In ray tracing, we can support analytic surfaces!
• No problem with interpolating z and normals, # of triangles, etc.

• Almost

• Core of ray-tracing  must be extremely efficient
• Usually involves solving a set of equations

• Using implicit formulas for primitives

RAY-OBJECT INTERSECTIONS

Example: Ray-Sphere intersection

ray:

(unit) sphere:

quadratic equation in t :

x t p v t y t p v t z t p v tx x y y z z() , () , ()     

p

v

x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

• Implicit functions:
• Spheres at arbitrary positions

• Same thing
• Conic sections (hyperboloids, ellipsoids, paraboloids, cones,

cylinders)
• Same thing (all are quadratic functions!)

• Higher order functions (e.g. tori and other quartic functions)
• In principle the same
• But root-finding difficult
• Numerical methods

RAY INTERSECTIONS WITH OTHER PRIMITIVES

• Polygons:
• First intersect ray with plane

• linear implicit function

• Then test whether point is inside or outside of polygon (2D test)

• For convex polygons
• Suffices to test whether point in on the right side of every boundary edge

RAY INTERSECTIONS WITH OTHER PRIMITIVES

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

• Note: rays replace perspective transformation
• Geometric Transformations:

• Similar goal as in rendering pipeline:
• Modeling scenes convenient using different coordinate systems for individual

objects
• Problem:

• Not all object representations are easy to transform
• This problem is fixed in rendering pipeline by restriction to polygons (affine

invariance!)

RAY-TRACING:
TRANSFORMATIONS

• Ray Transformation:
• For intersection test, it is only important that ray is in same

coordinate system as object representation
• Transform all rays into object coordinates

• Transform camera point and ray direction by inverse of model/view
matrix

• Shading has to be done in world coordinates (where light
sources are given)

• Transform object space intersection point to world coordinates
• Thus have to keep both world and object-space ray

RAY-TRACING:
TRANSFORMATIONS

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

• E.g. use BSP trees or other types of space partitioning

RAY-TRACING: PRACTICALITIES

• Light sources:
• For the moment: point and directional lights
• More complex lights are possible

• Area lights
• Fluorescence

RAY-TRACING: DIRECT ILLUMINATION

• Local surface information (normal…)
• For implicit surfaces F(x,y,z)=0:
 normal n(x,y,z) is gradient of F:

• Example:

RAY-TRACING: DIRECT ILLUMINATION

2222),,(rzyxzyxF 



















z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!

𝑛 𝑥, 𝑦, 𝑧 = 𝛻𝐹 𝑥, 𝑦, 𝑧 =

𝜕𝐹(𝑥, 𝑦, 𝑧)/𝜕𝑥
𝜕𝐹(𝑥, 𝑦, 𝑧)/𝜕𝑦
𝜕𝐹(𝑥, 𝑦, 𝑧)/𝜕𝑧

• For triangle meshes
• Interpolate per-vertex information as in rendering pipeline

• Phong shading!
• Same as discussed for rendering pipeline

• Difference to rendering pipeline:

• Have to compute Barycentric coordinates for every intersection point (e.g
plane equation for triangles)

RAY-TRACING: DIRECT ILLUMINATION

• Generation of rays
• Intersection of rays with geometric primitives
• Geometric transformations
• Lighting and shading
• Speed: Reducing number of intersection tests

RAY-TRACING: PRACTICALITIES
• Basic algorithm is simple but VERY expensive
• Optimize…

• Reduce number of rays traced
• Reduce number of ray-object intersection calculations

• Parallelize
• Cluster
• GPU

• Methods
• Bounding Boxes
• Spatial Subdivision

• Visibility, Intersection/Collision
• Tree Pruning

OPTIMIZED RAY-TRACING

• Goal: reduce number of intersection tests per ray
• Lots of different approaches:

• (Hierarchical) bounding volumes
• Hierarchical space subdivision

• Octree, k-D tree, BSP tree

SPATIAL SUBDIVISION DATA STRUCTURES
• Don’t test each ray against complex objects (e.g. triangle mesh)
• Do a quick conservative test first which eliminates most rays

• Surround complex object by simple, easy to test geometry (e.g. sphere

or axis-aligned box)
• Reduce false positives: make bounding volume as tight as possible!

BOUNDING VOLUMES: IDEA

• Extension of previous idea:
• Use bounding volumes for groups of objects

HIERARCHICAL BOUNDING
VOLUMES

• Bounding Volumes:
• Find simple object completely enclosing complicated objects

• Boxes, spheres
• Hierarchically combine into larger bounding volumes

• Spatial subdivision data structure:
• Partition the whole space into cells

• Grids, octrees, (BSP trees)
• Simplifies and accelerates traversal
• Performance less dependent on order in which objects are inserted

SPATIAL SUBDIVISION DATA STRUCTURES

• So far:
• All lights were either point-shaped or directional

• Both for ray-tracing and the rendering pipeline
• Thus, at every point, we only need to compute lighting formula

and shadowing for ONE direction per light

• In reality:
• All lights have a finite area
• Instead of just dealing with one direction, we now have to

integrate over all directions that go to the light source

SOFT SHADOWS: AREA LIGHT SOURCES

• Area lights produce soft shadows:
• In 2D:

AREA LIGHT SOURCES

Area light

Occluding surface

Receiving surface

Umbra
(core shadow)

Penumbra
(partial shadow)

• Point lights:
• Only one light direction:

• V is visibility of light (0 or 1)

•  is lighting
model (e.g.
diffuse or Phong)

AREA LIGHT SOURCES



Ireflected   V  Ilight
Point light

• Area Lights:
• Infinitely many light rays
• Need to integrate

over all of them:

• Lighting model
visibility and
light intensity
can now be different
for every ray!

AREA LIGHT SOURCES



Ireflected  () V ()  Ilight()  d
light
directions



Area light

• Rewrite the integration
• Instead of integrating over directions

integrate over points on the light source

• q point on reflecting surface
• p= F(s,t) point on the area light
• We are integrating over p

INTEGRATING OVER LIGHT SOURCE

 
ts

lightreflected dtdspIqpVqpqI
,

)()()()(



Ireflected  () V ()  Ilight()  d
light
directions



Problem:
Except for basic case not solvable analytically!

Largely due to the visibility term

So:
Use numerical integration = approximate light with lots of point

lights

INTEGRATION

• Regular grid of point lights
• Problem: Too regular

see 4 hard shadows

• Need LOTS of points
to avoid this problem

• Solution: Monte-Carlo!

NUMERICAL INTEGRATION
Area light

GLOBAL ILLUMINATION ALGORITHMS

• Ray Tracing
• Path Tracing
• Photon Mapping
• Radiosity
• Metropolis light transport
• …

