
CPSC 314
RASTERIZATION

UGRAD.CS.UBC.CA/~CS314

slides: Mikhail Bessmeltsev

THE RENDERING PIPELINE
Vertex Shader Vertex Post-Processing

Rasterization

Per-Sample Operations
Framebuffer

Vertices
and attributes Modelview transform

Interpolation

Per-vertex attributes Clipping

Viewport transform

Scan conversion
Fragment Shader

Texturing/...

Lighting/shading

Depth test
Blending

VIEWPORT MATRIX

23

• We need a transform that maps the lower left corner to
and upper right corner to

• The appropriate scale and shift can be done using the viewport
matrix:

[−0.5,−0.5]t
[W − 0.5,H − 0.5]t

xw
yw
zw
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

W / 2 0 0 (W −1) / 2
0 H / 2 0 (H −1) / 2
0 0 1/ 2 1 / 2
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

xn
yn
zn
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

CLIPPING

• We have to clip what’s outside our view volume
• Outside to the left/right, top/bottom
• More importantly, front/near:

x=left

x=right

y=top

y=bottom z=-near z=-farx

VCS

y

z

CLIPPING

• Where to do it in pipeline?

CLIPPING

• Option 1: Before projection
• Option 2: After NDCS
• Option 3: In between?

UNDERSTANDING Z
• z axis flip changes coord system handedness
• RHS before projection (eye/view coords)
• LHS after projection (clip, norm device coords)

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-neary=bottom

x

z

NDCS

y

(-1,-1,-1)

(1,1,1)

CLIPPING

• Option 1: Before projection
• Then it would have to know all the camera info

• Option 2: After NDCS
• Option 3: In between?

CLIPPING

• Option 1: Before projection
• Then it would have to know all the camera info

• Option 2: After NDCS
• Flip already occurred
• Too many calculations

• Option 3: In between?

CLIPPING

• Option 1: Before projection
• Then it would have to know all the camera info

• Option 2: After NDCS
• Flip already occurred
• Too many calculations

• Option 3: In between?

CLIPPING
• Perform clipping in clip-coordinates!
• After projection and before dividing by w

CLIPPING
• Perform clipping in clip-coordinates!
• After projection and before dividing by w

−𝑤# < 𝑥#< 𝑤#
−𝑤# < 𝑦#< 𝑤#
−𝑤# < 𝑧#< 𝑤#

We have not performed any divisions =>
no flip; efficiency

CLIPPING: UNDER THE HOOD
• Creates new vertices
• Done automatically, we won’t study the actual algorithm

CLIPPING: UNDER THE HOOD
• Creates new vertices
• Done automatically, we won’t study the actual algorithm
• Clip:
• Points -> discard
• Triangles -> clip

CLIPPING COORDINATES

• Eye coordinates (projected) à clip coordinates à normalized device
coordinates (NDCs)
• Dividing clip coordinates

by the component (the fourth component in the
homogeneous coordinates) yields normalized device coordinates
(NDCs).

22

(xc , yc , zc ,wc)wc(wc = wn)

xnwn

ynwn

znwn

wn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

xc
yc
zc
wc

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

sx 0 −cx 0
0 sy −cy 0

0 0 f + n
f − n

− 2 fn
f − n

0 0 −1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

xe
ye
ze
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

THE RENDERING PIPELINE
Vertex Shader Vertex Post-Processing

Rasterization

Per-Sample Operations
Framebuffer

Vertices
and attributes Modelview transform

Interpolation

Per-vertex attributes Clipping

Viewport transform

Scan conversion
Fragment Shader

Texturing/...

Lighting/shading

Depth test
Blending

RASTERIZATION

• This is part of the fixed function pipeline

• Input: all polygons are clipped
• Output: fragments (with varying variables interpolated)

25

Vertex Shader Vertex Post-Processing

Rasterization

Per-Sample Operations
Framebuffer

Vertices
and attributes Modelview transform

Interpolation

Per-vertex attributes Clipping

Viewport transform

Scan conversion
Fragment Shader

Texturing/...

Lighting/shading

Depth test
Blending

PATH FROM VERTEX TO PIXEL

26

POLYGONS

Interactive graphics uses Polygons
• Can represent any surface with arbitrary accuracy

– Splines, mathematical functions, ...
• simple, regular rendering algorithms

– embed well in hardware

POLYGONS

• Basic Types

simple
convex

simple
concave

non-simple
(self-intersection)

FROM POLYGONS TO TRIANGLES

• why? triangles are always planar, always convex

• simple convex polygons
• trivial to break into triangles

• concave or non-simple polygons
• more effort to break into triangles

WHAT IS SCAN CONVERSION?
(A.K.A. RASTERIZATION)
•screen is discrete •one possible scan conversion

HOW TO CHECK IF A PIXEL IS INSIDE?

HOW TO TEST IF A POINT IS IN A POLYGON?

simple
convex

simple
concave

non-simple
(self-intersection)

HOW TO CHECK IF A PIXEL IS INSIDE?

• Use implicit line equation:
• 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0
• What is geometric meaning of A,B,C?

• (A,B) is a normal (not unit!) to the line
• C is translation of that line

• How to find A,B,C?
• Option 1. Solve a system of 2 equations
• Option 2. Find any normal

• Orientation?
• Normal points in positive side

HOW TO CHECK IF A PIXEL IS INSIDE?

A point is inside ó
𝐴)𝑥 + 𝐵)𝑦 + 𝐶 > 0, 𝑖 = 1,… , 3

HOW TO TREAT BOUNDARY?

HOW TO TREAT BOUNDARY?

• If two triangles share an edge, scan conversion should be
consistent
• No pixel drawn twice
• No gaps

• Strategy ideas?

NAÏVE SCAN CONVERSION

• Testing every pixel is suboptimal
• Better ideas?

• Go over each pixel in bounding rectangle
• Check if pixel is inside/outside of triangle
• Use sign of edge equations

LESS NAÏVE SCAN CONVERSION SCANLINE IDEA (SIMPLIFIED)

• Basic structure of code:
• Setup: compute edge equations, bounding box
• (Outer loop) For each scanline in bounding box...
• (Inner loop) …check each pixel on scanline,

evaluating edge equations and drawing the pixel if
all three are positive

SCANLINE: CODE

findBoundingBox(xmin, xmax, ymin, ymax);
setupEdges (a0,b0,c0,a1,b1,c1,a2,b2,c2);

for (int y = yMin; y <= yMax; y++) {
for (int x = xMin; x <= xMax; x++) {

float e0 = a0*x + b0*y + c0;
float e1 = a1*x + b1*y + c1;
float e2 = a2*x + b2*y + c2;
if (e0 > 0 && e1 > 0 && e2 > 0)

Image[x][y] = TriangleColor;
}

}

SCANLINE: OPTIMIZED CODE

// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {
float e0 = a0*xMin + b0*y + c0;
float e1 = a1*xMin + b1*y + c1;
float e2 = a2*xMin + b2*y + c2;
for (int x = xMin; x <= xMax; x++) {
if (e0 > 0 && e1 > 0 && e2 > 0)

Image[x][y] = TriangleColor;

e0 += a0; e1+= a1; e2 += a2;
}

}

TRIANGLE RASTERIZATION ISSUES

• Exactly which pixels should be lit?
• A: Those pixels inside the triangle edges
• What about pixels exactly on the edge?

• Moving Slivers

TRIANGLE RASTERIZATION ISSUES

Sliver

ALIASING & ANTI-ALIASING

©	Adobe,	inc.,	https://helpx.adobe.com/photoshop/key-concepts/aliasing-anti-aliasing.html

HOW TO TEST IF A POINT IS IN A POLYGON?

simple
convex

simple
concave

non-simple
(self-intersection)

VALUES IN THE
INTERIOR

Barycentric coordinates

• Interpolate between vertices:
• z
• r,g,b - colour components
• u,v - texture coordinates
• - surface normals

• Equivalent
• Barycentric coordinates
• Bilinear interpolation
• Plane Interpolation

INTERPOLATION – ACCESS TRIANGLE INTERIOR

zyx NNN ,,

SIMPLER:
How to interpolate color between two points?

SIMPLER:
How to interpolate color between two points?

𝑐 𝑡 = 𝑐 0 ⋅ 1 − 𝑡 + 𝑐 1 ⋅ 𝑡

Linear interpolation

SIMPLER:
How to interpolate color between two points?

𝑐 𝑡 ≈ 𝑐 0 ⋅ 1 − 𝑡 + 𝑐 1 ⋅ 𝑡

Linear interpolation

SIMPLE GENERALIZATION:
BI-LINEAR INTERPOLATION

• Interpolate quantity along L and R edges
• (as a function of y)
• Then interpolate quantity as a function of x

y

P(x,y)

v1

v2

v3
vL vR

BI-LINEAR INTERPOLATION

RL P
cc
cP

cc
cP ⋅

+
+⋅

+
=

21

1

21

2

P2

P3

P1

PL PRP
3

21

1
2

21

2 P
dd

dP
dd

dPL +
+

+
=

1
21

1
2

21

2 P
bb
bP

bb
bPR +

+
+

=

c1: c2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

++
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

++
= 1

21

1
2

21

2

21

1
3

21

1
2

21

2

21

2 P
bb
bP

bb
b

cc
cP

dd
dP

dd
d

cc
cP

• Area

• Barycentric coordinates

BARYCENTRIC COORDINATES

31212
1 PPPPA ×=

3P

2P

1P

P

332211

3

21

,/

,/,/

21

1332

PaPaPaP

AAa

AAaAAa

PPP

PPPPPP

++=

=

==

• Imagine there are little heavy objects at the vertices
• If P is the center of mass of such triangle,
• What are the masses of those objects?

• Those are the barycentric coordinates.

• (That’s an equivalent definition. Why?)

BARYCENTRIC COORDINATES

3P

2P

1P

P

•weighted (affine) combination of vertices

BARYCENTRIC COORDINATES

332211 PaPaPaP ⋅+⋅+⋅=

1P

3P

2P

P

(1,0,0)

(0,1,0)

(0,0,1) 5.02 =a

12 =a

02 =a
1,,0
1

321

321

≤≤

=++

aaa
aaa

BARYCENTRIC COORDINATES

NOTE:

• In reality, only two values are enough to encode a point in a
triangle
• We added a 3rd one – a similar idea to homogeneous

coordinates!

• Those are, however, unique because of this:

𝑎6 + 𝑎7 + 𝑎8 = 1

BARYCENTRIC COORDINATES

• Are used to interpolate
• z
• all varying variables

• color
• normals

• Why do we interpolate z?

• Problems when using perspective
camera. We’ll see later (in texture
mapping)

