CPSC 314
LIGHTING AND SHADING

L =

RAD.CS.UBC.CA/~CS314
i UGRAD.CS UBC.CA/~CS3

LR —
slide its: Mikhail Bessmeltsev et al

THE RENDERING PIPELINE
Vertices Vertex Shader Vertex Post-Processing

andattributes | o delview transform wport transform

Per-vertex attributes

Rasterization Fragment Shader

Interpolation Lighting/shading

Per-Sample Operations
Blending

—» Framebuffer

LIGHTING/SHADING

* Goal
+ Model the interaction of light with surfaces to render realistic
images
« Generate per (pixel/vertex) color

FACTORS

« Light sources
« Location, type & color
« Surface materials
« How surfaces reflect
light
« Transport of light
+ How light moves in a
scene

« Viewer position

FACTORS

« Light sources
* Location, type & color
« Surface materials
« How surfaces reflect
light
« Transport of light
* How light moves in a
scene

« Viewer position

* How can we do this in
the pipeline?

ILLUMINATION MODELS/ALGORITHMS

Local illumination - Fast Global illumination — Slow
Ignore real physics, approximate the look Physically based
Interaction of each object with light Itracionsbeusen cbjcs
+ Compute on surface (light to viewer)

@

THE BIG PICTURE (BASIC)

« Light: energy in a range of wavelengths

+ White light — all wavelengths

+ Colored (e.g. red) — subset of wavelengths
« Surface “color” — reflected wavelength

+ White — reflects all lengths

« Black — absorbs everything

« Colored (e.g. red) absorbs all but the reflected color
« Multiple light sources add (energy sums)

MATERIALS

« Surface reflectance:
« llluminate surface point with a ray of light from different directions
+ How much light is reflected in each direction?

BASIC TYPES

| diffuse ., glossy 4 iTor

e N N2

REFLECTANCE DISTRIBUTION MODEL

« Most surfaces exhibit complex reflectances
« Vary with incident and reflected directions.
+ Model with combination — known as BRDF
+ BROF: Bidirectional Reflectance Distribution Function

BRDF MEASUREMENTS/PLOTS

2D sllce

S e
ioor )

SURFACE ROUGHNESS
cata rr?icroscopic scale, all real surfaces are
rougl

« cast shadows on themselves

« “mask” reflected light:

shadow shadow

N

SURFACE ROUGHNESS

« notice another effect of roughness:
« each “microfacet” is treated as a perfect mirror.
« incident light reflected in different directions by different facets.
« end result is mixed reflectance.
« smoother surfaces are more specular or glossy.

« random distribution of facet normals results in diffuse reflectance.

PHYSICS OF DIFFUSE REFLECTION

« ideal diffuse reflection
« very rough surface at the microscopic level
« real-world example: chalk
+ microscopic variations mean incoming ray of light equally likely to be
reflected in any direction over the hemisphere
« what does the reflected intensity depend on?

Lo

LAMBERT’'S COSINE LAW

« ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a light source in a given direction is
proportional to the cosine of the angle between that direction and the surface normal

« reflected intensity

+ independent of viewing direction

+ depends on surface orientation wrt light
« often called Lambertian surfaces

DIFFUSE (LAMBERT)

Lambert's Cosine Law

Cosine Law: Eg= £+ c0s(0)

Intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.




COMPUTING DIFFUSE REFLECTION

Depends on angle of incidence: angle between surface

normal and incoming light ! "
Laituse = kg Tigny €08 6

In practice use vector arithmetic
Litise = Ko ljgn )

Scalar (B/W intensity) or 3-tuple (color)
+ ky diffuse coefficient, surface color
+ gy incoming light intensity
+ Igsuee: OULgOINg light intensity (for diffuse reflection)

NB: Always normalize vectors used in lighting!!
* n, I'should be unit vectors

DIFFUSE LIGHTING EXAMPLES

+ Lambertian sphere from several lighting angles:

+ need only consider angles from 0° to 90°

DIFFUSE INTERREFLECTION

SPECULAR HIGHLIGHTS

Michiel van de Panne

PHYSICS OF SPECULAR REFLECTION

« Geometry of specular (perfect mirror) reflection
« Snell’'s law special case: Law of Reflection

= -+2(nel)n

PHYSICS OF SPECULAR REFLECTION

« Geometry of specular (perfect mirror) reflection
* Snell’'s law special case: Law of Reflection
« In GLSL: use reflect(-,n) n

r = -4+2(nehn

CALCULATING R VECTOR

P=Ncos0|L||N| projection of L onto N
P =N cos 0 L, N are unit length
P=N(N-L)

2P=R+L

2P-L=R

2(N(N-L))-L=R

EMPIRICAL APPROXIMATION

* Snell's law = perfect mirror-like surfaces
« But..
« few surfaces exhibit perfect specularity
+ Gaze and reflection directions never EXACTLY coincide
+ Expect most reflected light to travel in direction predicted by
Snell's Law

« But some light may be reflected in a direction slightly off the
ideal reflected ray

« As angle from ideal reflected ray increases, we expect less light
to be reflected

EMPIRICAL APPROXIMATION

« Angular falloff

« How to model this falloff?

PHONG LIGHTING

Most common lighting model in computer graphics (Phong Bui-Tuong, 1975)

Ispecnlar = ksllign(cos ¢)ns

| =ksI,igm (ver)™

specular _
@: angle between r and view l
direction v

: purely empirical constant, varies

rr'%te of fa“oﬁ

kﬁ; specular coefficient, highlight

color

no physical basis, “plastic” look
reminder: normalize all vectors:‘n,|,r,v

PHONG EXAMPLES

varying light position

varying ns

ALTERNATIVE MODEL

Blinn-Phong model (Jim Blinn, 1977)

«+ Variation with better physical interpretation
* h: halfway vector; r: roughness

1

specular

=k, -(h~n)”’ -1,@,;

withh = (1+v)/2

MULTIPLE LIGHTS

« Light is linear
« If multiple rays illuminate the surface point the result is just the sum of
the individual reflections for each ray

1,(k,(n-1,)+k(r, v)")

AMBIENT LIGHT

+ Non-directional light — environment light

« Object illuminated with same light everywhere
« Looks like silhouette

« lllumination equation I=1k,
« I,- ambient light intensity
* k,- fraction of this light reflected from surface

LIGHT SOURCES

+ ambient lights
« no identifiable source or direction
« hack for replacing true global illumination
+ (diffuse interreflection: light bouncing off from other objects)
|
|
O

|

ILLUMINATION EQUATION (PHONG)

« If we take the previous formula and add ambient component:

L, + 30,k (n1) 4k (1, v)") ‘

P

Ambient + Diffuse + Specular = Phong Reflection




LIGHT

« Light has color
« Interacts with object color (r,g,b)
I1=1k,
1,=(,.1,.1,)
Ky = Chyokg k)
I=(1, 1) =(,k,.1,k,.1,k,;)

o1y arfars Laghag> L ap
« Blue light on white surface?

« Blue light on red surface?

LIGHT AND MATERIAL SPECIFICATION

« Light source: amount of RGB light emitted

« value = intensity per channel

eg. (1.0,0.5,05)

« every light source emits ambient, diffuse, and specular light
« Materials: amount of RGB light reflected

« value represents percentage reflected

eg. (0.0,1.0,0.5)

« Interaction: multiply components

« Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

WHITEBOARD EXAMPLE

Io=(2,5,.2), I = (1.0,1.0,1.0), ky = (.1,.1,.1), ka = (.3, 8,.7), k, = (8, 8,.8),n = 20.

630 C
Nl
B150)
(2,1,0 .
A B L:light (61,0
(5,1,0) E=eye
Na point

WHITEBOARD EXAMPLE

i i “-‘F-"Wl ¢ | o ambient light color I, s (.1,.1,.2)
« light color I, is (1.0, 9, .9)
- D|(7.3.0) o diffuse material color kg is (9, 2,.9)
Al(12.0) B » ambient material color , is (2, 2, .2)
N, 729 (12-10) » specular material color k, is (1, 1, 0)
Lslight E=eye i .
©51,0) point o shininess exponent is 30

LIGHT SOURCE TYPES

« Point Light
« light originates at a point

« Directional Light (point light at infinity)
« light rays are parallel
+ Rays hit a planar surface at identical angles

* Spot Light
« point light with limited angles

- b

LIGHT SOURCE TYPES

« Point Light “w‘\
« light originates at a point L
« defined by location only

« Directional Light (point light at infinity)
« light rays are parallel %
+ Rays hit a planar surface at identical angles
« defined by direction only

* Spot Light

« point light with limited angles \
- defined by location, direction, and angle range |

LIGHT SOURCES

« area lights

«+ light sources with a finite area

+ more realistic model of many light sources
+ much more complex!

WHICH LIGHTS/MATERIALS ARE USED
HERE?

LIGHT SOURCE FALLOFF

« Quadratic falloff (point- and spot lights)
«+ Brightness of objects depends on power per unit area that hits the object
+ The power per unit area for a point or spot light decreases quadratically

with distance
()
Area dm(2r)

ILLUMINATION EQUATION WITH ATTENUATION
« For multiple light sources:

IF "
I=1k, + ,E @ (ky(n-1,) +k (7, -v)")

« d; distance between surface and light source + distance
between surface and viewer, A — attenuation function

@@ W

WHEN TO APPLY LIGHTING MODEL?

per polygon per vertex per pixel
“flat shading” “Gouraud “per pixel lighting”
shading” “Phong shading”

Image © Intergraph.
Gouraud Computer Systems.

LIGHTING VS. SHADING

« lighting
+ process of computing the luminous intensity (i.e., outgoing light) at a
particular 3-D point, usually on a surface

« shading
+ the process of assigning colors to pixels

+ (why the distinction?) e

e

APPLYING ILLUMINATION

« we now have an illumination model for a point on a surface
« if surface defined as mesh of polygonal facets, which points should we
use?
« fairly expensive calculation

« several possible answers, each with different implications for visual quality of
result

APPLYING ILLUMINATION

« polygonal/triangular models
« each facet has a constant surface normal
« if light is directional, diffuse reflectance is constant across the facet
- why?

FLAT SHADING

« simplest approach calculates illumination at a single point for
each polygon

« obviously inaccurate for smooth surfaces

FLAT SHADING APPROXIMATIONS

« if an object really is faceted, is this accurate?

* no!
« for point sources, the direction to light varies across the
facet
« for specular reflectance, direction to eye varies across
the facet é

N



IMPROVING FLAT SHADING

« what if evaluate Phong lighting model at each pixel of the

polygon?
« better, but result still clearly faceted w
« for smoother-looking surfaces
we introduce vertex normals at each
vertex
« usually different from facet normal
« used only for shading

« think of as a better approximation of the real surface that the
polygons approximate

VERTEX NORMALS

« vertex normals may be
« provided with the model
* computed from first principles
« approximated by
averaging the normals
of the facets that
share the vertex

GOURAUD SHADING

+ most common approach
« perform Phong lighting at the vertices
« linearly interpolate the resulting colors over faces
+ along edges
+ along scanlines
edge: mixof ¢, ¢, C,

does this eliminate the facets? T >

c
interior: mix of c1, c2, c3

edge: mixof 1, ¢3

GOURAUD SHADING ARTIFACTS

« often appears dull, chalky

« lacks accurate specular component
« if included, will be averaged over entire polygon

c this vertex shading spread

this interior shading missed! over too much area

GOURAUD SHADING ARTIFACTS

* Mach bands
« eye enhances discontinuity in first derivative
« very disturbing, especially for highlights

GOURAUD SHADING ARTIFACTS

* Mach bands.

G

Discontinuity in rate
of color change
occurs here

GOURAUD SHADING ARTIFACTS

« perspective transformations
«+ affine combinations only invariant under affine, not under perspective
transformations

« thus, perspective projection alters the linear interpolation!

GOURAUD SHADING ARTIFACTS

« perspective transformation problem

colors slightly “swim” on the surface as objects move relative to the
camera

usually ignored since often only small difference

« usually smaller than changes from lighting variations

+ to do it right
« either shading in object space
. or ion for perspecti

ing
« expensive — thus hardly ever done for colors

PHONG SHADING

« linearly interpolating surface normal across the facet, applying Phong lighting
model at every pixel
« same input as Gouraud shading
« pro: much smoother results
« con: considerably more expensive

+ not the same as Phong lighting
*+ common confusion
« Phong lighting: empirical model to calculate illumination at a point on a surface

PHONG SHADING

« linearly interpolate the vertex normals
« compute lighting equations at each pixel

« can use specular component
#lights

Lt = Kl apicns + 2 Il(kd (1) + &y (vor )™ )
N

=1
remember: normals used in
diffuse and specular terms

discontinuity in normal’ s rate of
change harder to detect

PHONG SHADING DIFFICULTIES

+ more computationally expensive
« per-pixel vector normalization and lighting computation!
« floating point operations required
« straightforward with shaders
« lighting after perspective projection
« messes up the angles between vectors
« have to keep eye-space vectors around

SHADING ARTIFACTS: SILHOUETTES

« polygonal silhouettes remain

Gouraud Phong

SHADING ARTIFACTS: ORIENTATION

« interpolation dependent on polygon orientation
+ view dependence!

A
Rotate -90°
B
and color
same point c
B D A
—
D
c

Shading Artifacts: Shared Vertices

D c-
I-
3 A

vertex B shared by two rectangles on the right, but
not by the one on the left

H

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

alarge discontinuity could arise

SHADING MODELS SUMMARY

« flat shading
« compute Phong lighting once for entire polygon
« Gouraud shading
« compute Phong lighting at the vertices and interpolate lighting values
across polygon
+ Phong shading
« compute averaged vertex normals
« interpolate normals across polygon and perform Phong lighting across
polygon

SHUTTERBUG: FLAT SHADING




SHUTTERBUG: GOURAUD SHADING SHUTTERBUG: PHONG SHADING NON-PHOTOREALISTIC SHADING NON-PHOTOREALISTIC SHADING

_l+n-1
2

« cool-to-warm shading k, o=k, +A-k)c, « draw silhouettes: if (e-n,)(e-n,) =0 , e=edge-eye vector

« draw creases: if (n,-n,) = threshold




