

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016

Tamara Munzner

Final Review I

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Beyond 314: Other Graphics Courses

- 426: Computer Animation
 - will be offered next year (2016/2017)
- 424: Geometric Modelling
 - will be offered in two years (2017/2018)

- 526: Algorithmic Animation van de Panne
- 530P: Sensorimotor Computation Pai
- 533A: Digital Geometry Sheffer
- 547: Information Visualization Munzner

Final

- exam notes: noon Thu Apr 14 SWNG 122
 - exam will be timed for 2.5 hours, but reserve entire 3-hour block of time just in case
 - closed book, closed notes
 - except for 2-sided 8.5"x11" sheet of handwritten notes
 - ok to staple midterm sheet + new one back to back
 - calculator: a good idea, but not required
 - graphical OK, smartphones etc not ok
 - IDs out and face up

Final Emphasis

- covers entire course
- includes some material from before midterm
 - transformations, viewing
 - H1/H2, P1/P2
- but much heavier weighting for material after midterm
 - H3/H4, P3/P4

- post-midterm topics:
 - shaders
 - lighting/shading
 - raytracing
 - collision
 - rasterization / clipping
 - hidden surfaces / blending / picking
 - textures / procedural
 - color
- light coverage
 - animation, visualization

Sample Final

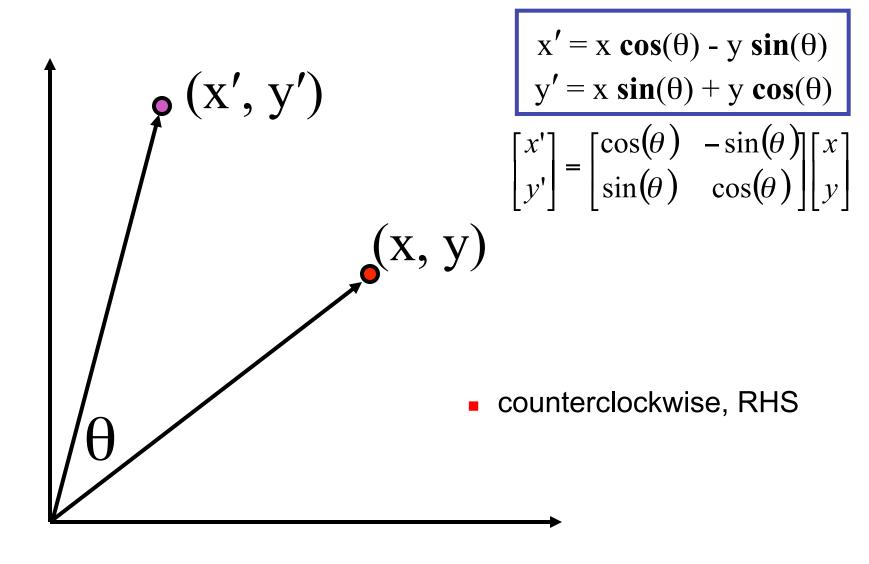
- final+solutions now posted
 - Jan 2007
- note some material not covered this time
 - projection types like cavalier/cabinet: Q1b, Q1c,
 - antialiasing/sampling: Q1d, Q1l, Q12
 - image-based rendering: Q1g
 - clipping algorithms: Q8, Q9
 - scientific visualization: Q14
 - curves/splines: Q18, Q19
- missing some new material
 - shaders

Studying Advice

- do problems!
 - work through old homeworks, exams
 - especially from years where I taught

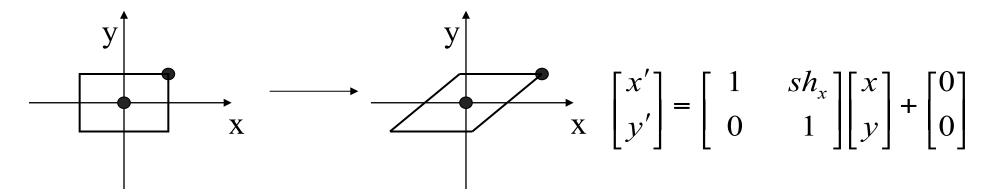
Review – Fast!!

Review: 2D Rotation

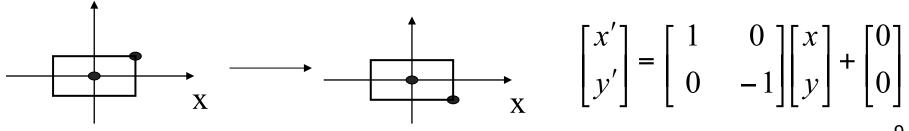


Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height



- reflect across x axis
 - mirror

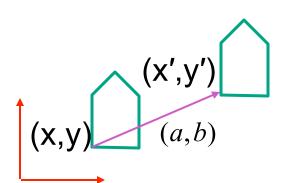


Review: 2D Transformations

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix



matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

10

Review: Linear Transformations

- linear transformations are combinations of
 - shear
 - scale
 - rotate
 - reflect

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$

$$x' = ax + by$$
$$y' = cx + dy$$

- properties of linear transformations
 - satisfies T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Affine Transformations

- affine transforms are combinations of
 - linear transformations
 - translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

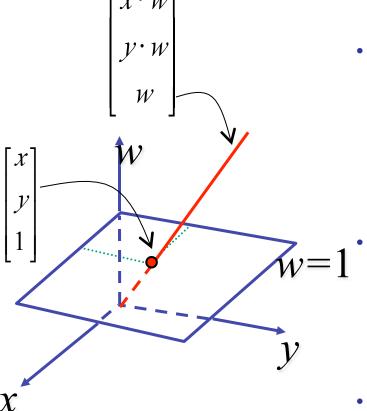
- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Homogeneous Coordinates

homogeneous

cartesian

$$(x, y, w) \xrightarrow{/w} (\frac{x}{w}, \frac{y}{w})$$



homogenize to convert homog. 3D point to cartesian 2D point:

- divide by w to get (x/w, y/w, 1)
- projects line to point onto w=1 plane
- like normalizing, one dimension up

when w=0, consider it as direction

- points at infinity
- these points cannot be homogenized
- lies on x-y plane
- (0,0,0) is undefined

Review: 3D Homog Transformations

use 4x4 matrices for 3D transformations

translate(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & & \\ & 1 & & & \\ & & 1 & & c \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} a & & & \\ & b & & \\ & & c & \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

scale(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotate(
$$x$$
, θ)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ \cos\theta & -\sin\theta & \\ \sin\theta & \cos\theta & \\ & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \begin{bmatrix} \cos\theta & & \sin\theta \\ & 1 \\ -\sin\theta & & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ & \sin\theta & \cos\theta \\ & & 1 \end{bmatrix}$$

Rotate (y,θ)

$$\begin{bmatrix}
\cos\theta & \sin\theta \\
& 1 \\
-\sin\theta & \cos\theta
\end{bmatrix}$$

Rotate(z, θ)

$$\begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}$$
1

Review: 3D Shear

general shear
$$shear(hxy, hxz, hyx, hyz, hzx, hzy) = \begin{bmatrix} 1 & hyx & hzx & 0 \\ hxy & 1 & hzy & 0 \\ hxz & hyz & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- "x-shear" usually means shear along x in direction of some other axis
 - correction: not shear along some axis in direction of x
 - to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

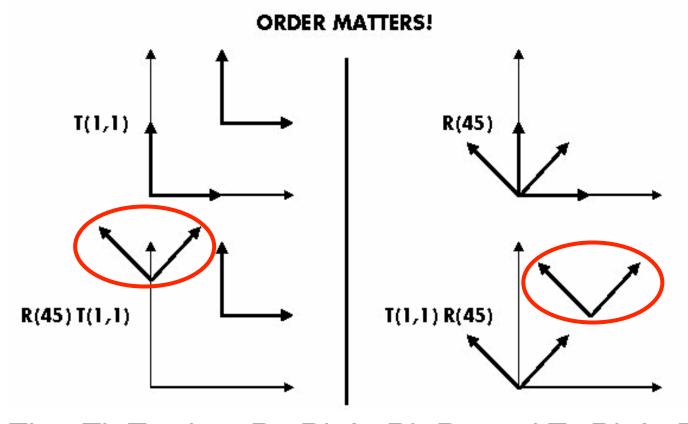
$$shear Along X in Direction Of Y(h) = \begin{bmatrix} 1 & h & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear Along X in Direction Of Z(h) = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shear Along Y in Direction Of X(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ h & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear Along Y in Direction Of Z(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & h & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shear Along Z in Direction Of Y(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shear Along Z in Direction Of Y(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & h & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Review: Composing Transformations



Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

- translations commute
- rotations around same axis commute
- rotations around different axes do not commute
- rotations and translations do not commute

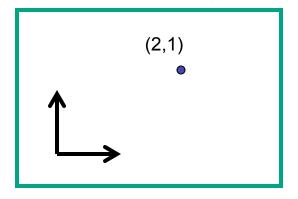
Review: Composing Transformations

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - glTranslatef(2,3,0);
 - glRotatef(-90,0,0,1);
 - glVertexf(1,1,1);
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

Review: Interpreting Transformations

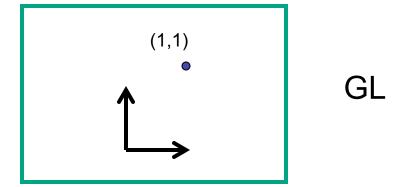
p' = TRp

translate by (-1,0)



right to left: moving object

left to right: changing coordinate system



 same relative position between object and basis vectors

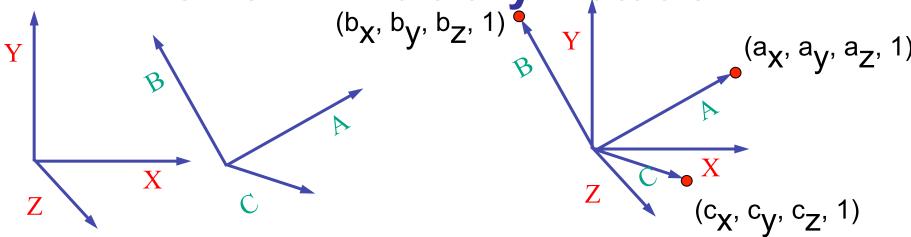
Review: General Transform Composition

- transformation of geometry into coordinate system where operation becomes simpler
 - typically translate to origin

perform operation

transform geometry back to original coordinate system

Review: Arbitrary Rotation

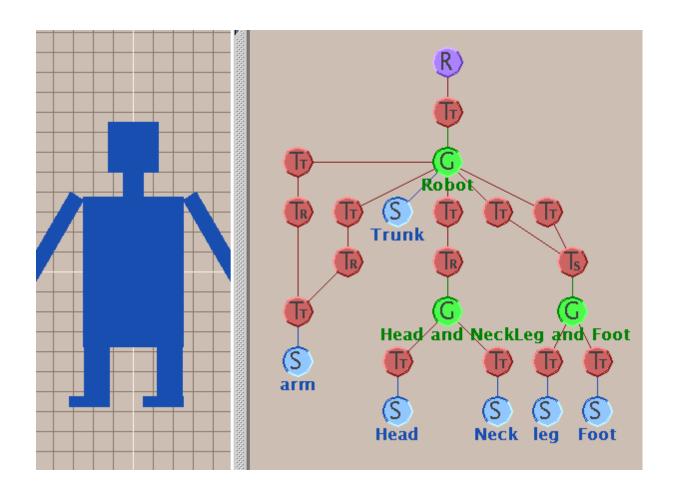


- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems XYZ and ABC
 - A's location in the XYZ coordinate system is $(a_X, a_V, a_Z, 1), ...$
- transformation from one to the other is matrix R whose columns are A,B,C.

$$R(X) = \begin{bmatrix} a_x & b_x & c_x & 0 \\ a_y & b_y & c_y & 0 \\ a_z & b_z & c_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = (a_x, a_y, a_z, 1) = A$$

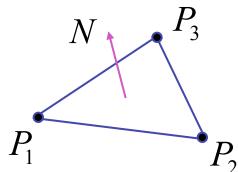
Review: Transformation Hierarchies

transforms apply to graph nodes beneath them



Review: Normals

polygon:

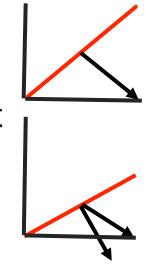


$$N = (P_2 - P_1) \times (P_3 - P_1)$$

- assume vertices ordered CCW when viewed from visible side of polygon
- normal for a vertex
 - specify polygon orientation
 - used for lighting
 - supplied by model (i.e., sphere), or computed from neighboring polygons

Review: Transforming Normals

- cannot transform normals using same matrix as points
 - nonuniform scaling would cause to be not perpendicular to desired plane!



$$P \longrightarrow P' = MP$$

$$N' = QN$$

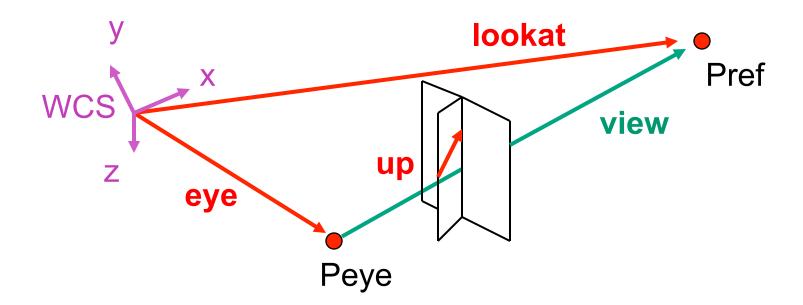
given M, what should Q be?

$$\mathbf{Q} = \left(\mathbf{M}^{-1}\right)^{\mathsf{T}}$$

inverse transpose of the modelling transformation

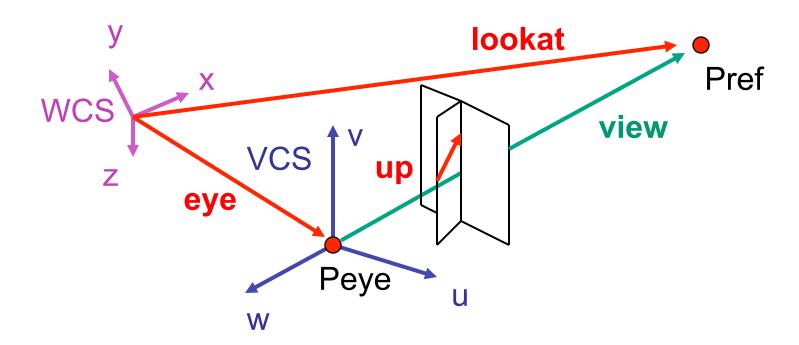
Review: Camera Motion

- rotate/translate/scale difficult to control
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector



Review: Constructing Lookat

- translate from origin to eye
- rotate view vector (lookat eye) to w axis
- rotate around w to bring up into vw-plane



Review: V2W vs. W2V

•
$$\mathbf{M}_{V2W}$$
=TR
$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & e_{x} \\ 0 & 1 & 0 & e_{y} \\ 0 & 0 & 1 & e_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{R} = \begin{bmatrix} u_{x} & v_{x} & w_{x} & 0 \\ u_{y} & v_{y} & w_{y} & 0 \\ u_{z} & v_{z} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- we derived position of camera as object in world
 - invert for gluLookAt: go from world to camera!

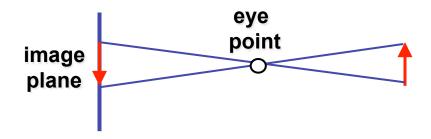
•
$$\mathbf{M}_{\text{W2V}} = (\mathbf{M}_{\text{V2W}})^{-1} = \mathbf{R}^{-1} \mathbf{T}^{-1}$$

$$\mathbf{R}^{-1} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_x \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

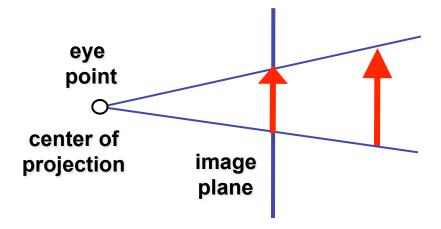
$$\mathbf{M}_{W2V} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & -\mathbf{e} \cdot \mathbf{u} \\ v_{x} & v_{y} & v_{z} & -\mathbf{e} \cdot \mathbf{v} \\ w_{x} & w_{y} & w_{z} & -\mathbf{e} \cdot \mathbf{w} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & -e_{x} * u_{x} + -e_{y} * u_{y} + -e_{z} * u_{z} \\ v_{x} & v_{y} & v_{z} & -e_{x} * v_{x} + -e_{y} * v_{y} + -e_{z} * v_{z} \\ w_{x} & w_{y} & w_{z} & -e_{x} * w_{x} + -e_{y} * w_{y} + -e_{z} * w_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Review: Graphics Cameras

real pinhole camera: image inverted

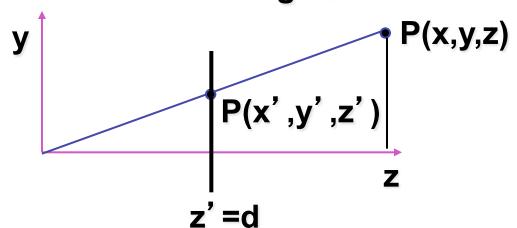


computer graphics camera: convenient equivalent



Review: Basic Perspective Projection

similar triangles



P(x,y,z)
$$\frac{y'}{d} = \frac{y}{z} \Rightarrow y' = \frac{y \cdot d}{z}$$
$$x' = \frac{x \cdot d}{z} \qquad z' = d$$

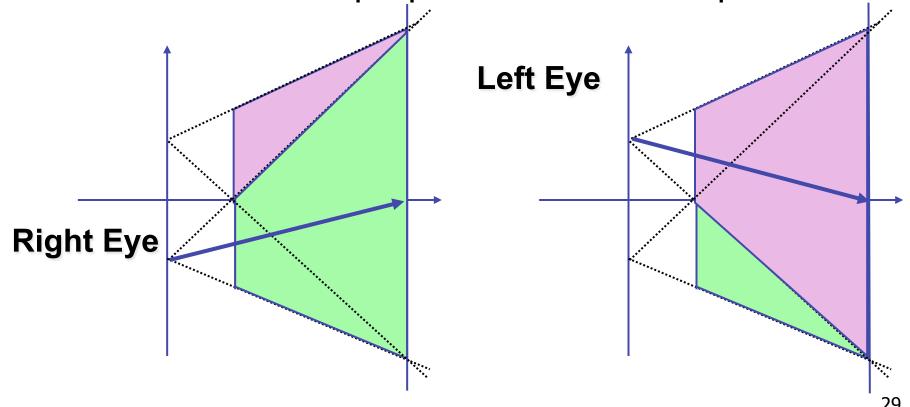
$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix} \quad \begin{array}{c} \text{homogeneous} \\ \text{coords} \\ \end{bmatrix} \quad \begin{array}{c} x \\ y \\ z \\ z/d \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Review: Asymmetric Frusta

- our formulation allows asymmetry
 - why bother? binocular stereo

view vector not perpendicular to view plane



Review: Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - determines FOV in other direction
 - also set near, far (reasonably intuitive)

