University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2016

Tamara Munzner

Final Review |

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Beyond 314: Other Graphics Courses

426: Computer Animation
* will be offered next year (2016/2017)

424. Geometric Modelling
* will be offered in two years (2017/2018)

526: Algorithmic Animation - van de Panne
530P: Sensorimotor Computation - Pai
533A: Digital Geometry — Sheffer

547: Information Visualization - Munzner

Final

* exam notes: noon Thu Apr 14 SWNG 122

« exam will be timed for 2.5 hours, but reserve
entire 3-hour block of time just in case

* closed book, closed notes

» except for 2-sided 8.5"x11” sheet of
handwritten notes

* ok to staple midterm sheet + new one back to
back

* calculator: a good idea, but not required
» graphical OK, smartphones etc not ok
* IDs out and face up

Final Emphasis

e covers entire course

* Includes some material
from before midterm
* transformations, viewing

« H1/H2, P1/P2

* but much heavier
weighting for material
after midterm

- H3/H4, P3/P4

» post-midterm topics:

shaders
lighting/shading
raytracing

collision

rasterization / clipping

hidden surfaces /
blending / picking

textures / procedural
color

* light coverage

* animation, visualization

4

Sample Final

 final+solutions now posted
« Jan 2007
* note some material not covered this time
* projection types like cavalier/cabinet: Q1b, Q1c,
* antialiasing/sampling: Q1d, Q1l, Q12
* Image-based rendering: Q1g
» clipping algorithms: Q8, Q9
* scientific visualization: Q14
* curves/splines: Q18, Q19

* missing some new material
- shaders

Studying Advice

* do problems!

» work through old homeworks, exams
» especially from years where | taught

Review - Fast!!

Review: 2D Rotation

x" =x cos(0) - y sin(0)
(X’, y’) y' =x sin(0) +y cos(0)
'x'] _ cos(H) —sin(@)] [x'
-y'

sin(H) cos(@) y

X, y)

= counterclockwise, RHS

* shear along x axis

Review: Shear, Reflection

* push points to right in proportion to height

y‘.

>

y‘.

AL 7

L

* reflect across x axis
° mirror

Review: 2D Transformations

matrix multiplication matrix multiplication
X' a O][x x' COS(H) —sin(@ X
V' 10 b y V' sin(H) cos(H y
H_l |\ ~ J
scaling matrix rotation matrix
(X"y") vector addition |
X a X+d X
+ —] =
‘(x,y (a,b) »1 7 b [y+b] [y}
- a D][x] [x"
c dllyl |V
L Ll

translation multiplication matrix?? 10

Review: Linear Transformations

* |inear transformations are combinations of

 shear
 scale

* rotate y' c d y

* reflect

« properties of linear transformations
- satisifes T(sx+fy) =s T(x) +t T(y)

* origin maps to origin

lines map to lines

parallel lines remain parallel
ratios are preserved

closed under composition

x'l [a bl[x

X'=ax + by

y'=cx+dy

11

Review: Affine Transformations

« affine transforms are combinations of
* linear transformations -
* franslations

o N O

%-
I
I o Q‘ Q 1

r—t\\m
% 1

« properties of affine transformations
* origin does not necessarily map to origin
* lines map to lines
 parallel lines remain parallel
* ratios are preserved
 closed under composition

12

s

Review: Homogeneous Coordinates

homogeneous cartesian
/'w X y
(Xa)/9 W) (—’ o
e] w w
VW . homogenize to convert homog. 3D
y point to cartesian 2D point:
Y . divide by w to get (x/w, y/w, 1)

e projects line to point onto w=1 plane

 like normalizing, one dimension up
when w=0, consider it as direction

e points at infinity

e these points cannot be homogenized
B4 * lies on x-y plane

(0,0,0) is undefined

-1

13

Review: 3D Homog Transformations

* use 4x4 matrices for 3D transformations

translate(a,b,c) scale(a,b,c)
x'T [1 allx] X'l Ja X
i1 bily M| b y
z' 1 cl|z z' c z
1 1111 1 1{]1
Rotate(x,0) Rotate(y,0) Rotate(z,0)
x'T |1 1M x] [cosO sin @ 1 [cos@ —sinf
y' cosf@ -—sinf y 1 sin@ cos6
2| sinf cos6 z —sin@ cosO 1
1 1__1_ 1 1

Review: 3D Shear

[1 hyx hzx

* general shear shear(hxy,hxz,hyx, hyz, hzx, hzy) =
hxz hyz 1

0
hxy 1 hzy O
0
0O 0 0 1

* "x-shear" usually means shear along x in direction of some other axis
« correction: not shear along some axis in direction of x
» to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

1 h 00 1 0 h O]
shearAlongXinDirectionOfY (h) = 0100 shearAlongXinDirectionOfZ(h) = 0100
0 0 1 0 0 01 0
0 0 0 1 00 0 1
[1 0 0 0 1 000
shearAlongYinDirectionOfX (h) = ho 100 shearAlongYinDirectionOfZ(h) = 0 1 A0
0 010 0 010
0 0 0 1 0 0 0 1
1 0 0 0] 1 0 0 0]
0 100 Lo 0100
shearAlongZinDirectionOfX (h) = Lo 1o shearAlongZinDirectionOfY (h) = 0o h 10
0 0 0 1 0 0 0 1]

Review: Composing Transformations

ORDER MATTERS!

'y
T(1,1) R{45) @

.. N,

Ta Tb=Tb Ta, but RaRb !=Rb Ra and Ta Rb !=Rb Ta
« translations commute

* rotations around same axis commute

« rotations around different axes do not commute

« rotations and translations do not commute

R(45) T{1,1)

16

Review: Composing Transformations
p'=TRp

« which direction to read?
* right to left
* interpret operations wrt fixed coordinates
* moving object
* |left to right OpenGL pipeline ordering!
* interpret operations wrt local coordinates
e changing coordinate system

* OpenGL updates current matrix with postmultiply
 glTranslatef(2,3,0);
* glRotatef(-90,0,0,1);
+ glVertexf(1,1,1);

* specify vector last, in final coordinate system
* first matrix to affect it is specified second-to-last 17

Review: Interpreting Transformations

right to left: moving object

(1,1)

p'=TRp

intuitive?
translate by (-1,0) ‘

(2,1 .
o left to right: changing coordinate system

‘ (1,1)
[) GL

* same relative position between object and
basis vectors

18

Review: General Transform Composition

* transformation of geometry into coordinate
system where operation becomes simpler

* typically translate to origin
» perform operation

* transform geometry back to original
coordinate system

19

®

X
V4

>

C

Review: Arbltrary Rotation

(by, y bz, R Y (ay, ay, az, 1)
N B>
X
2 (Cy Cy» Cz 1)

* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
« A’s location in the XYZ coordinate system is (a Ay, 8z , 1), .

X’

* transformation from one to the other is matrix R whose
columns are A4,B,C:

R(E) =

o R

R

N

o > &> >

z

0

C
c)’
C

—-_ o o o
I)_‘ o o)_‘I

)/9

Review: Transformation Hierarchies

 transforms apply to graph nodes beneath them

21

Review: Normals

* polygon:

N
4 N =(P,~B)x(P, - P)
P

| P
* assume vertices ordered CCW when viewed
from visible side of polygon

 normal for a vertex

* specify polygon orientation N
* used for lighting
 supplied by model (i.e., sphere),

or computed from neighboring polygons

22

Review: Transforming Normals

« cannot transform normals using same
matrix as points
* nonuniform scaling would cause to be not
perpendicular to desired plane!

P P'=MP
N " N'=0ON
given M,
what should Q be?

Q = Q\/[_l y inverse transpose of the modelling transformation

23

Review: Camera Motion

* rotate/translate/scale difficult to control
* arbitrary viewing position
* eye point, gaze/lookat direction, up vector

y lookat > @
X Pref
WCS S view
Z up

eye
o I

Peye

24

Review: Constructing Lookat

* translate from origin to eye
* rotate view vector (lookat — eye) to w axis
* rotate around w to bring up into vw-plane

lookat > ®
X Pref
pv ™ view
VCS up
eye / \

25

* Myaw=TR

Review: V2W vs. W2V

T=

1
0
0

0

0
1

0
0

0 e u, v, w, 0

0 ey R u, v, w, 0

1 e u, v. w, 0
zZ

0 1 0 0 0 1

« we derived position of camera as object in world
* invert for gluLookAt: go from world to camera!

° I\/IW2V=(I\/IV2W)-1=R-1-I__1 R! Ve VW Ve

w2V

u, u, u 0 1 0 0

0 T 0 1 0

B w, w, w. 0 o o0 1

0 0 0 1] 0 0 0

U, U, U, —e Fu t+—e Fu +—e ¥U
V. oV, V. —e kv +-e ¥V t+—e ¥V,

W W, W, —e EW t—e kW +—e ¥W,

0O 0 O 1

26

Review: Graphics Cameras

* real pinhole camera: image inverted

eye
image point
plane

= computer graphics camera: convenient equivalent

eye
point

center of
projection image
plane

27

Review: Basic Perspective Projection

similar triangles Y _Y = y-d
y | Pxy,z) d =z z
/1@ x'= i z'=d
i z
| z
z' =d

Z;Cd homogeneous [1 0 0 0

, coords y 0 1 0 0

7] Il B 00 1 0

. ~/d _O 0 1/d O_

Review: Asymmetric Frusta

* our formulation allows asymmetry

- why bother? binocular stereo
* view vector not perpendicular to view plane

2

A

Left Eye

.
o
.
.
.
.
o
.
.
.
.
.
o

.
0"
] K4
.
Right Eye | -
)

3
.
.
0
.
.
.
.
.
L
L
0

£
'''''

Review: Field-of-View Formulation

 FOV in one direction + aspect ratio (w/h)

* determi

nes FOV in other direction

* also set near, far (reasonably intuitive)

o
S
03
o
S
-

-

Frustum [—

30

