CPSC 314, Written Homework 3

Out: 2 March 2016

Due: 9 March 2016 2pm (hand in at start of lecture)
Value: 4\% of final grade
Total Points: 100

For all the following questions, refer to the figure and parameters below. Vertices are always to be shaded using their own normal (example, C must be shaded using N c). Show your work. Remember to normalize all vectors used in lighting calculations!

- $\mathrm{B}=(2,3,0)$
- $\mathrm{C}=(8,12,0)$
- $\mathrm{D}=(6,9,0)$, not a vertex
- $\mathrm{Na}=(-0.5,-0.3,0)$
- $\mathrm{Nc}_{\mathrm{c}}=(0.9,0.5,0)$
- $\mathrm{Nf}=(-1,-1,0)$
- $\mathrm{Ng}=(1,-1,0)$
- light position $\mathrm{L}=(-1,0,0)$
- ambient light color $I a=(0.5,0.1,0.5)$
- light color $\mathrm{I} 1=(0.9,1,1)$
- diffuse material color $\mathrm{kd}=(.3, .8, .2)$
- ambient material color $\mathrm{ka}=(.5, .2, .5)$
- specular material color $\mathrm{ks}=(0.5,1,1)$
- shininess exponent kse $=10$
- eye point $\mathrm{E}=(1,-2,0)$

1. (4 pts) Compute the normal at point B using per-vertex normals, interpolating between the provided normals for face F and face G . Use equal weight average normal (no multiplier factors).
2. (50 pts) Compute the ambient, diffuse, specular, and total illumination at points B, C, and D using Phong lighting and the flat shading model. Note: for flat shading, use the rightmost vertex on each face.
3. (18 pts) Do those computations using the Gouraud shading model.
4. (28 pts) Do those computations using the Phong shading model.
